skip to main content

Search for: All records

Creators/Authors contains: "Vannette, Rachel L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Bee–fungus associations are common, and while most studies focus on entomopathogens, emerging evidence suggests that bees associate with a variety of symbiotic fungi that can influence bee behavior and health. Here, we review nonpathogenic fungal taxa associated with different bee species and bee-related habitats. We synthesize results of studies examining fungal effects on bee behavior, development, survival, and fitness. We find that fungal communities differ across habitats, with some groups restricted mostly to flowers (Metschnikowia), while others are present almost exclusively in stored provisions (Zygosaccharomyces). Starmerella yeasts are found in multiple habitats in association with many bee species. Bee species differ widely in the abundance and identity of fungi hosted. Functional studies suggest that yeasts affect bee foraging, development, and pathogen interactions, though few bee and fungal taxa have been examined in this context. Rarely, fungi are obligately beneficial symbionts of bees, whereas most are facultative bee associates with unknown or ecologically contextual effects. Fungicides can reduce fungal abundance and alter fungal communities associated with bees, potentially disrupting bee–fungi associations. We recommend that future study focus on fungi associated with non-honeybee species and examine multiple bee life stages to document fungal composition, abundance, and mechanistic effects on bees.

    more » « less
  2. Free, publicly-accessible full text available March 1, 2024
  3. Summary

    Epiphytic microbes frequently affect plant phenotype and fitness, but their effects depend on microbe abundance and community composition. Filtering by plant traits and deterministic dispersal‐mediated processes can affect microbiome assembly, yet their relative contribution to predictable variation in microbiome is poorly understood.

    We compared the effects of host‐plant filtering and dispersal on nectar microbiome presence, abundance, and composition. We inoculated representative bacteria and yeast into 30 plants across four phenotypically distinct cultivars ofEpilobium canum. We compared the growth of inoculated communities to openly visited flowers from a subset of the same plants.

    There was clear evidence of host selection when we inoculated flowers with synthetic communities. However, plants with the highest microbial densities when inoculated did not have the highest microbial densities when openly visited. Instead, plants predictably varied in the presence of bacteria, which was correlated with pollen receipt and floral traits, suggesting a role for deterministic dispersal.

    These findings suggest that host filtering could drive plant microbiome assembly in tissues where species pools are large and dispersal is high. However, deterministic differences in microbial dispersal to hosts may be equally or more important when microbes rely on an animal vector, dispersal is low, or arrival order is important.

    more » « less
  4. Abstract

    Floral nectar is frequently colonised by microbes. However, nectar microbial communities are typically species‐poor and dominated by few cosmopolitan genera. One hypothesis is that nectar constituents may act as environmental filters. We tested how five non‐sugar nectar compounds as well as elevated sugar impacted the growth of 12 fungal and bacterial species isolated from nectar, pollinators, and the environment. We hypothesised that nectar isolated microbes would have the least growth suppression. Additionally, to test if nectar compounds could affect the outcome of competition between microbes, we grew a subset of microbes in co‐culture across a subset of treatments. We found that some compounds such as H2O2suppressed microbial growth across many but not all microbes tested. Other compounds were more specialised in the microbes they impacted. As hypothesised, the nectar specialist yeastMetschnikowia reukaufiiwas unaffected by most nectar compounds assayed. However, many non‐nectar specialist microbes remained unaffected by nectar compounds thought to reduce microbial growth. Our results show that nectar chemistry can influence microbial communities but that microbe‐specific responses to nectar compounds are common. Nectar chemistry also affected the outcome of species interactions among microbial taxa, suggesting that non‐sugar compounds can affect microbial community assembly in flowers.

    more » « less
  5. Management of Monilinia laxa, the causal agent of brown rot blossom blight in almond (Prunus dulcis), relies heavily on the use of chemical fungicides during bloom. However, chemical fungicides can have nontarget effects on beneficial arthropods, including pollinators, and select for resistance in the pathogen of concern. Almond yield is heavily reliant on successful pollination by healthy honey bees (Apis mellifera); thus, identifying sustainable, effective, and pollinator-friendly control methods for blossom blight during bloom is desirable. Flower-inhabiting microbes could provide a natural, sustainable form of biocontrol for M. laxa, while potentially minimizing costly nontarget effects on almond pollinators and the services they provide. As pollinators are sensitive to floral microbes and their associated taste and scent cues, assessing effects of prospective biocontrol species on pollinator attraction is also necessary. Here, our objective was to isolate and identify potential biocontrol microbes from an array of agricultural and natural flowering hosts and test their efficacy in suppressing M. laxa growth in culture. Out of an initial 287 bacterial and fungal isolates identified, 56 were screened using a dual culture plate assay. Most strains reduced M. laxa growth in vitro. Ten particularly effective candidate microbes were further screened for their effect on honey bee feeding. Of the 10, nine were found to both strongly suppress M. laxa growth in culture and not reduce honey bee feeding. These promising results suggest a number of strong candidates for augmentative microbial biocontrol of brown rot blossom blight in almond with potentially minimal effects on honey bee pollination. 
    more » « less

    Variation in dispersal ability among taxa affects community assembly and biodiversity maintenance within metacommunities. Although fungi and bacteria frequently coexist, their relative dispersal abilities are poorly understood. Nectar-inhabiting microbial communities affect plant reproduction and pollinator behavior, and are excellent models for studying dispersal of bacteria and fungi in a metacommunity framework. Here, we assay dispersal ability of common nectar bacteria and fungi in an insect-based dispersal experiment. We then compare these results with the incidence and abundance of culturable flower-inhabiting bacteria and fungi within naturally occurring flowers across two coflowering communities in California across two flowering seasons. Our microbial dispersal experiment demonstrates that bacteria disperse via thrips among artificial habitat patches more readily than fungi. In the field, incidence and abundance of culturable bacteria and fungi were positively correlated, but bacteria were much more widespread. These patterns suggest shared dispersal routes or habitat requirements among culturable bacteria and fungi, but differences in dispersal or colonization frequency by thrips, common flower visitors. The finding that culturable bacteria are more common among nectar sampled here, in part due to superior thrips-mediated dispersal, may have relevance for microbial life history, community assembly of microbes, and plant–pollinator interactions.

    more » « less
  7. null (Ed.)
    Flowers at times host abundant and specialized communities of bacteria and fungi that influence floral phenotypes and interactions with pollinators. Ecological processes drive variation in microbial abundance and composition at multiple scales, including among plant species, among flower tissues, and among flowers on the same plant. Variation in microbial effects on floral phenotype suggests that microbial metabolites could cue the presence or quality of rewards for pollinators, but most plants are unlikely to rely on microbes for pollinator attraction or reproduction. From a microbial perspective, flowers offer opportunities to disperse between habitats, but microbial species differ in requirements for and benefits received from such dispersal. The extent to which floral microbes shape the evolution of floral traits, influence fitness of floral visitors, and respond to anthropogenic change is unclear. A deeper understanding of these phenomena could illuminate the ecological and evolutionary importance of floral microbiomes and their role in the conservation of plant–pollinator interactions. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)