Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Magnetotail earthward‐propagating fast plasma flows provide important pathways for magnetosphere‐ionosphere coupling. This study reexamines a flow‐related red‐line diffuse‐like aurora event previously reported by Liang et al. (2011,https://doi.org/10.1029/2010ja015867), utilizing THEMIS and ground‐based auroral observations from Poker Flat. We find that time domain structures (TDSs) within the flow bursts efficiently drive electron precipitation below a few keV, aligning with predominantly red‐line auroral intensifications in this non‐substorm event. The diffuse‐like auroras sometimes coexisted with or potentially evolved from discrete forms. We forward model red‐line diffuse auroras due to TDS‐driven precipitation, employing the time‐dependent TREx‐ATM auroral transport code. The good correlation (∼0.77) between our modeled and observed red line emissions underscores that TDSs are a primary driver of the red‐line diffuse‐like auroras, though whistler‐mode wave contributions are needed to fully explain the most intense red‐line emissions.more » « less
-
Abstract Energetic (≳50 keV) electron precipitation from the magnetosphere to the ionosphere during substorms can be important for magnetosphere‐ionosphere coupling. Using conjugate observations between the THEMIS, ELFIN, and DMSP spacecraft during a substorm, we have analyzed the energetic electron precipitation, the magnetospheric injection, and the associated plasma waves to examine the role of waves in pitch‐angle scattering plasma sheet electrons into the loss cone. During the substorm expansion phase, ELFIN‐A observed 50–300 keV electron precipitation from the plasma sheet that was likely driven by wave‐particle interactions. The identification of the low‐altitude extent of the plasma sheet from ELFIN is aided by DMSP global auroral images. Combining quasi‐linear theory, numerical test particle simulations, and equatorial THEMIS measurements of particles and fields, we have evaluated the relative importance of kinetic Alfvén waves (KAWs) and whistler‐mode waves in driving the observed precipitation. We find that the KAW‐driven bounce‐averaged pitch‐angle diffusion coefficientsnear the edge of the loss cone are ∼10−6–10−5s−1for these energetic electrons. Thedue to parallel whistler‐mode waves, observed at THEMIS ∼10‐min after the ELFIN observations, are ∼10−8–10−6s−1. Thus, at least in this case, the observed KAWs dominate over the observed whistler‐mode waves in the scattering and precipitation of energetic plasma sheet electrons during the substorm injection.more » « less
-
Abstract Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018,https://doi.org/10.1063/1.5039687). In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.more » « less
-
Abstract Electron injections are critical processes associated with magnetospheric substorms, which deposit significant electron energy into the ionosphere. Although wave scattering of <10 keV electrons during injections has been well studied, the link between magnetotail electron injections and energetic (≥100 keV) electron precipitation remains elusive. Using conjugate observations between the Electron Loss and Fields Investigation (ELFIN) and Magnetospheric Multiscale (MMS) missions, we present evidence of tens to hundreds of keV electron precipitation to the ionosphere potentially driven by kinetic Alfvén waves (KAWs) associated with magnetotail electron injections and magnetic field gradients. Test particle simulations adapted to observations show that dipolarization‐front magnetic field gradients and associated ∇Bdrifts allow Doppler‐shifted Landau resonances between the injected electrons and KAWs, producing electron spatial scattering across the front which results in pitch‐angle decreases and subsequent precipitation. Test particle results show that such KAW‐driven precipitation can account for ELFIN observations below ∼300 keV.more » « less
-
Abstract Plasma sheet electron precipitation is critical in magnetosphere‐ionosphere coupling and has long been attributed to electron scattering by whistler‐mode and electron cyclotron harmonic waves. Recent observations have revealed that time domain structures (TDSs) that appear as broadband electrostatic fluctuations may also scatter plasma sheet electrons. However, there has been no observational evidence of TDS scattering electrons into the ionosphere. This study presents potential evidence from conjugate observations between the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission and the low‐altitude Enhanced Polar Outflow Probe (e‐POP) spacecraft. During the five events presented, THEMIS observed intense electron injections accompanied by TDSs, while e‐POP captured precipitation of plasma sheet electrons with energies∼100–325 eV over a broad pitch angle range. The observed TDSs can efficiently scatter these electrons exceeding the strong diffusion limit. Our results suggest that TDSs may contribute to plasma sheet electron scattering around times of injections.more » « less
-
Abstract The spatial scale and intensity of Earth’s magnetotail current sheet determine the magnetotail configuration, which is critical to one of the most energetically powerful phenomena in the Earth’s magnetosphere, substorms. In the absence of statistical information about plasma currents, theories of the magnetotail current sheets were mostly based on the isotropic stress balance. Such models suggest that thin current sheets cannot be long and should have strong plasma pressure gradients along the magnetotail. Using Magnetospheric Multiscale and THEMIS observations and global simulations, we explore realistic configuration of the magnetotail current sheet. We find that the magnetotail current sheet is thinner than expected from theories that assume isotropic stress balance. Observed plasma pressure gradients in thin current sheets are insufficiently strong (i.e., current sheets are too long) to balance the magnetic field line tension force. Therefore, pressure anisotropy is essential in the configuration of thin current sheets where instability precedes substorm onset.more » « less
-
This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere.more » « less
An official website of the United States government
