skip to main content


Search for: All records

Creators/Authors contains: "Vijayaraghavan, Aravindan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 24, 2025
  2. We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider a graph G = (V, E). The buffered expansion of a set S ⊆ V with a buffer B ⊆ V∖S is the edge expansion of S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a graph into disjoint components P_i and buffers B_i, in which the size of buffer B_i for P_i is small relative to the size of P_i: |B_i| ≤ ε|P_i|. The buffered expansion of a buffered partition is the maximum of buffered expansions of the k sets P_i with buffers B_i. Let h^{k,ε}_G be the buffered expansion of the optimal ε-buffered k-partitioning, then for every δ>0, h^{k,ε}_G ≤ O(1)⋅(log k) ⋅λ_{⌊(1+δ)k⌋} / ε, where λ_{⌊(1+δ)k⌋} is the ⌊(1+δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G. Our inequality is constructive and avoids the ``square-root loss'' that is present in the standard Cheeger inequalities (even for k=2). We also provide a complementary lower bound, and a novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. We prove a new generalization of the higher-order Cheeger inequality for partitioning with buffers. Consider a graph G=(V,E). The buffered expansion of a set S⊆V with a buffer B⊆V∖S is the edge expansion of S after removing all the edges from set S to its buffer B. An ε-buffered k-partitioning is a partitioning of a graph into disjoint components Pi and buffers Bi, in which the size of buffer Bi for Pi is small relative to the size of Pi: |Bi|≤ε|Pi|. The buffered expansion of a buffered partition is the maximum of buffered expansions of the k sets Pi with buffers Bi. Let hk,εG be the buffered expansion of the optimal ε-buffered k-partitioning, then for every δ>0, hk,εG≤Oδ(1)⋅(logkε)⋅λ⌊(1+δ)k⌋, where λ⌊(1+δ)k⌋ is the ⌊(1+δ)k⌋-th smallest eigenvalue of the normalized Laplacian of G. Our inequality is constructive and avoids the ``square-root loss'' that is present in the standard Cheeger inequalities (even for k=2). We also provide a complementary lower bound, and a novel generalization to the setting with arbitrary vertex weights and edge costs. Moreover our result implies and generalizes the standard higher-order Cheeger inequalities and another recent Cheeger-type inequality by Kwok, Lau, and Lee (2017) involving robust vertex expansion. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Free, publicly-accessible full text available January 1, 2025
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)