skip to main content

Search for: All records

Creators/Authors contains: "Vilgalys, Rytas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2023
  2. Fungi of the Conidiobolus group belong to the family Ancylistaceae (Entomophthorales, Entomophthoromycotina, Zoopagomycota) and include over 70 predominantly saprotrophic species in four similar and closely related genera, that were separated phylogenetically recently. Entomopathogenic fungi of the genus Batkoa are very close morphologically to the Conidiobolus species. Their thalli share similar morphology, and they produce ballistic conidia like closely related entomopathogenic Entomophthoraceae. Ballistic conidia are traditionally considered as an efficient tool in the pathogenic process and an important adaptation to the parasitic lifestyle. Our study aims to reconstruct the phylogeny of this fungal group using molecular and genomic data, ancestral lifestyle and morphological features of the conidiobolus-like group and the direction of their evolution. Based on phylogenetic analysis, some species previously in the family Conidiobolaceae are placed in the new families Capillidiaceae and Neoconidiobolaceae, which each include one genus, and the Conidiobolaceae now includes three genera. Intermediate between the conidiobolus-like groups and Entomophthoraceae, species in the distinct Batkoa clade now belong in the family Batkoaceae. Parasitism evolved several times in the Conidiobolus group and Ancestral State Reconstruction suggests that the evolution of ballistic conidia preceded the evolution of the parasitic lifestyle.
  3. Free, publicly-accessible full text available October 11, 2023
  4. Abstract

    Closely related species are expected to have similar functional traits due to shared ancestry and phylogenetic inertia. However, few tests of this hypothesis are available for plant‐associated fungal symbionts. Fungal leaf endophytes occur in all land plants and can protect their host plant from disease by a variety of mechanisms, including by parasitizing pathogens (e.g., mycoparasitism). Here, we tested whether phylogenetic relatedness among species ofCladosporium, a widespread genus that includes mycoparasitic species, predicts the effect of this endophyte on the severity of leaf rust disease. First, we used congruence among different marker sequences (i.e., genealogical concordance phylogenetic species recognition criterion) to delimit species ofCladosporium. Next, in a controlled experiment, we quantified both mycoparasitism and disease modification for the selectedCladosporiumspecies. We identified 17 species ofCladosporium; all the species reduced rust disease severity in our experiment.Cladosporiumphylogeny was a significant predictor of mycoparasitism. However, we did not observe a phylogenetic effect on disease severity overall, indicating that other mechanism/s operating independently of shared ancestry also contributed to endophyte effects on disease severity. Indeed, a second experiment showed thatCladosporiumendophyte exudates (no live organism) from divergent species groups equally reduced disease severity. Our results reveal that multiple mechanisms contribute to the protective effects of anmore »endophyte against a plant pathogen, but not all traits underlying these mechanisms are phylogenetically conserved.

    « less
  5. Recent studies have shown that M. elongata (M. elongata) isolated from Populus field sites has a dual endophyte–saprotroph lifestyle and is able to promote the growth of Populus. However, little is known about the host fidelity of M. elongata and whether M. elongata strains differ from one another in their ability to promote plant growth. Here, we compared the impacts of three Populus-associated M. elongata isolates (PMI 77, PMI 93, and PMI 624) on the growth of seven different crop species by measuring plant height, plant dry biomass, and leaf area. M. elongata isolates PMI 624 and PMI 93 increased the plant height, leaf area, and plant dry weight of Citrullus lanatus, Zea mays, Solanum lycopersicum, and Cucurbita to a much greater degree than PMI 77 (33.9% to 14.1%). No significant impacts were observed for any isolate on the growth of Abelmoschus esculentus or Glycine max. On the contrary, Glycine max significantly decreased in height by 30.6% after the inoculation of M. elongata PMI 77. In conclusion, this study demonstrates that M. elongata generally promoted metrics of the plant performance among a diverse set of importantly non-leguminous crop species. Future research on understanding the molecular mechanisms that underlie strain andmore »host variability is warranted.« less
  6. Aim Ectomycorrhizal fungi (ECMF) are partners in a globally distributed tree symbiosis implicated in most major ecosystem functions. However, resilience of ECMF to future climates is uncertain. We forecast these changes over the extent of North American Pinaceae forests. Location About 68 sites from North American Pinaceae forests ranging from Florida to Ontario in the east and southern California to Alaska in the west. Taxon Ectomycorrhizal fungi (Asco‐ and Basidiomycetes). Methods We characterized ECMF communities at each site using molecular methods and modelled climatic drivers of diversity and community composition with general additive, generalized dissimilarity models and Threshold Indicator Taxa ANalysis (TITAN). Next, we projected our models across the extent of North American Pinaceae forests and forecast ECMF responses to climate changes in these forests over the next 50 years. Results We predict median declines in ECMF species richness as high as 26% in Pinaceae forests throughout a climate zone comprising more than 3.5 million square kilometres of North America (an area twice that of Alaska state). Mitigation of greenhouse gas emissions can reduce these declines, but not prevent them. The existence of multiple diversity optima along climate gradients suggest regionally divergent trajectories for North American ECMF, which is corroboratedmore »by corresponding ECMF community thresholds identified in TITAN models. Warming of forests along the boreal–temperate ecotone results in projected ECMF species loss and declines in the relative abundance of long‐distance foraging ECMF species, whereas warming of eastern temperate forests has the opposite effect. Main Conclusions Our results reveal potentially unavoidable ECMF species‐losses over the next 50 years, which is likely to have profound (if yet unclear) effects on ECMF‐associated biogeochemical cycles.« less