Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the samemore »
-
Individuals who are blind adopt multiple procedures to tactually explore images. Automatically recognizing and classifying users’ exploration behaviors is the first step towards the development of an intelligent system that could assist users to explore images more efficiently. In this paper, a computational framework was developed to classify different procedures used by blind users during image exploration. Translation-, rotationand scale-invariant features were extracted from the trajectories of users movements. These features were divided as numerical and logical features and were fed into neural networks. More specifically, we trained spiking neural networks (SNNs) to further encode the numerical features as model strings. The proposed framework employed a distance-based classification scheme to determine the final class/label of the exploratory procedures. Dempster-Shafter Theory (DST) was applied to integrate the distances obtained from all the features. Through the experiments of different dynamics of spiking neurons, the proposed framework achieved a good performance with 95.89% classification accuracy. It is extremely effective in encoding and classifying spatio-temporal data, as compared to Dynamic Time Warping and Hidden Markov Model with 61.30% and 28.70% accuracy. The proposed framework serves as the fundamental block for the development of intelligent interfaces, enhancing the image exploration experience for the blind.
-
Abstract Telementoring platforms can help transfer surgical expertise remotely. However, most telementoring platforms are not designed to assist in austere, pre-hospital settings. This paper evaluates the system for telementoring with augmented reality (STAR), a portable and self-contained telementoring platform based on an augmented reality head-mounted display (ARHMD). The system is designed to assist in austere scenarios: a stabilized first-person view of the operating field is sent to a remote expert, who creates surgical instructions that a local first responder wearing the ARHMD can visualize as three-dimensional models projected onto the patient’s body. Our hypothesis evaluated whether remote guidance with STAR could lead to performing a surgical procedure better, as opposed to remote audio-only guidance. Remote expert surgeons guided first responders through training cricothyroidotomies in a simulated austere scenario, and on-site surgeons evaluated the participants using standardized evaluation tools. The evaluation comprehended completion time and technique performance of specific cricothyroidotomy steps. The analyses were also performed considering the participants’ years of experience as first responders, and their experience performing cricothyroidotomies. A linear mixed model analysis showed that using STAR was associated with higher procedural and non-procedural scores, and overall better performance. Additionally, a binary logistic regression analysis showed that using STARmore »