skip to main content


Search for: All records

Creators/Authors contains: "Wan, Chenghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dielectric mirrors comprising thin‐film multilayers are widely used in optical experiments because they can achieve substantially higher reflectance compared to metal mirrors. Here, potential problems are investigated that can arise when dielectric mirrors are used at oblique incidence, in particular for focused beams. It is found that light beams reflected from dielectric mirrors can experience lateral beam shifts, beam‐shape distortion, and depolarization, and these effects have a strong dependence on wavelength, incident angle, and incident polarization. Because vendors of dielectric mirrors typically do not share the particular layer structure of their products, several dielectric‐mirror stacks are designed and simulated, and then the lateral beam shift from two commercial dielectric mirrors and one coated metal mirror is also measured. This paper brings awareness of the tradeoffs between dielectric mirrors and front‐surface metal mirrors in certain optics experiments, and it is suggested that vendors of dielectric mirrors provide information about beam shifts, distortion, and depolarization when their products are used at oblique incidence.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. We found that temperature-dependent infrared spectroscopy measurements (i.e., reflectance or transmittance) using a Fourier-transform spectrometer can have substantial errors, especially for elevated sample temperatures and collection using an objective lens. These errors can arise as a result of partial detector saturation due to thermal emission from the measured sample reaching the detector, resulting in nonphysical apparent reduction of reflectance or transmittance with increasing sample temperature. Here, we demonstrate that these temperature-dependent errors can be corrected by implementing several levels of optical attenuation that enable convergence testing of the measured reflectance or transmittance as the thermal-emission signal is reduced, or by applying correction factors that can be inferred by looking at the spectral regions where the sample is not expected to have a substantial temperature dependence.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    We report a new type of reflective polarizer based on free-space coupling to surface-plasmon polaritons that has a high extinction ratio and high efficiency at infrared frequencies. 
    more » « less
  5. null (Ed.)
  6. Thermal emission is the process by which all objects at nonzero temperatures emit light and is well described by the Planck, Kirchhoff, and Stefan–Boltzmann laws. For most solids, the thermally emitted power increases monotonically with temperature in a one-to-one relationship that enables applications such as infrared imaging and noncontact thermometry. Here, we demonstrated ultrathin thermal emitters that violate this one-to-one relationship via the use of samarium nickel oxide (SmNiO3), a strongly correlated quantum material that undergoes a fully reversible, temperature-driven solid-state phase transition. The smooth and hysteresis-free nature of this unique insulator-to-metal phase transition enabled us to engineer the temperature dependence of emissivity to precisely cancel out the intrinsic blackbody profile described by the Stefan–Boltzmann law, for both heating and cooling. Our design results in temperature-independent thermally emitted power within the long-wave atmospheric transparency window (wavelengths of 8 to 14 µm), across a broad temperature range of ∼30 °C, centered around ∼120 °C. The ability to decouple temperature and thermal emission opens a gateway for controlling the visibility of objects to infrared cameras and, more broadly, opportunities for quantum materials in controlling heat transfer.

     
    more » « less
  7. Abstract

    To see color, the human visual system combines the response of three types of cone cells in the retina—a compressive process that discards a significant amount of spectral information. Here, we present designs based on thin-film optical filters with the goal of enhancing human color vision by breaking its inherent binocular redundancy, providing different spectral content to each eye. We fabricated a set of optical filters that “splits” the response of the short-wavelength cone between the two eyes in individuals with typical trichromatic vision, simulating the presence of approximately four distinct cone types. Such an increase in the number of effective cone types can reduce the prevalence of metamers—pairs of distinct spectra that resolve to the same tristimulus values. This technique may result in an enhancement of spectral perception, with applications ranging from camouflage detection and anti-counterfeiting to new types of artwork and data visualization.

     
    more » « less