skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Suhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph contrastive learning has made remarkable advances in settings where there is a scarcity of task-specific labels. Despite these advances, the significant computational overhead for representation inference incurred by existing methods that rely on intensive message passing makes them unsuitable for latency-constrained applications. In this paper, we present GraphECL, a simple and efficient contrastive learning method for fast inference on graphs. GraphECL does away with the need for expensive message passing during inference. Specifically, it introduces a novel coupling of the MLP and GNN models, where the former learns to computationally efficiently mimic the computations performed by the latter. We provide a theoretical analysis showing why MLP can capture essential structural information in neighbors well enough to match the performance of GNN in downstream tasks. The extensive experiments on widely used real-world benchmarks that show that GraphECL achieves superior performance and inference efficiency compared to state-of-the-art graph constrastive learning (GCL) methods on homophilous and heterophilous graphs. Code is available at: https: //github.com/tengxiao1/GraphECL. 
    more » « less
    Free, publicly-accessible full text available July 16, 2025
  2. Graph Neural Networks (GNNs) have seen significant success in tasks such as node classification, largely contingent upon the availability of sufficient labeled nodes. Yet, the excessive cost of labeling large-scale graphs led to a focus on active learning on graphs, which aims for effective data selection to maximize downstream model performance. Notably, most existing methods assume reliable graph topology, while real-world scenarios often present noisy graphs. Given this, designing a successful active learning framework for noisy graphs is highly needed but challenging, as selecting data for labeling and obtaining a clean graph are two tasks naturally interdependent: selecting high-quality data requires clean graph structure while cleaning noisy graph structure requires sufficient labeled data. Considering the complexity mentioned above, we propose an active learning framework, GALClean, which has been specifically designed to adopt an iterative approach for conducting both data selection and graph purification simultaneously with best information learned from the prior iteration. Importantly, we summarize GALClean as an instance of the Expectation-Maximization algorithm, which provides a theoretical understanding of its design and mechanisms. This theory naturally leads to an enhanced version, GALClean+. Extensive experiments have demonstrated the effectiveness and robustness of our proposed method across various types and levels of noisy graphs. 
    more » « less
  3. Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, such as nodes or edges, that the target GNN relies upon for making predictions. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph, which can preserve original predictions. However, an inductive bias is deep-rooted in this framework: Several subgraphs can result in the same or similar outputs as the original graphs. Consequently, they have the danger of providing spurious explanations and failing to provide consistent explanations. Applying them to explain weakly performed GNNs would further amplify these issues. To address this problem, we theoretically examine the predictions of GNNs from the causality perspective. Two typical reasons for spurious explanations are identified: confounding effect of latent variables like distribution shift and causal factors distinct from the original input. Observing that both confounding effects and diverse causal rationales are encoded in internal representations,we propose a new explanation framework with an auxiliary alignment loss, which is theoretically proven to be optimizing a more faithful explanation objective intrinsically. Concretely for this alignment loss, a set of different perspectives are explored: anchor-based alignment, distributional alignment based on Gaussian mixture models, mutual-information-based alignment, and so on. A comprehensive study is conducted both on the effectiveness of this new framework in terms of explanation faithfulness/consistency and on the advantages of these variants. For our codes, please refer to the following URL link:https://github.com/TianxiangZhao/GraphNNExplanation 
    more » « less