skip to main content


Search for: All records

Creators/Authors contains: "Wang, Xueyi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Key Points Enhancement of field‐aligned warm ions observed in the plasma sheet was energy‐dispersive with increasing energy from 20 eV to >100 eV The probe at larger r observed the energy‐dispersive enhancements 20 min earlier than did the probe at smaller r The enhancements were likely caused by enhanced convection and the dispersion was likely due to acceleration by field‐aligned potential 
    more » « less
  2. Abstract

    Based on the predictions of global 3D hybrid simulations, we present a new transport/acceleration path for escaped O+ions in the upstream solar wind region resulting from the impact of a particular IMF tangential discontinuity (TD) with negative (positive) IMFBzon the discontinuity's anti‐sunward (sunward) side. For O+ions escaping to the duskside magnetosheath and with gyro‐radii larger than the TD thickness, when they encounter the TD, they can first go sunward into the upstream solar wind. They then gyrate clockwise to the pre‐noon side and get accelerated within the solar wind region and circulate back to the dawnside magnetosphere. These ions may be accelerated to well within the ring current energy range depending on the solar wind electric field strength. This new transport/acceleration path can bring some of the escaped ions into the inner magnetosphere, thus providing a new mechanism for generating an O+ring current population.

     
    more » « less
  3. Abstract It has been suggested that ion foreshock waves originating in the solar wind upstream of the quasi-parallel ( Q -||) shock can impact the planetary magnetosphere leading to standing shear Alfvén waves, i.e., the field line resonances (FLRs). In this paper, we carry out simulations of interaction between the solar wind and terrestrial magnetosphere under radial interplanetary magnetic field conditions by using a 3-D global hybrid model, and show the properties of self-consistently generated field line resonances through direct mode conversion in magnetospheric response to the foreshock disturbances for the first time. The simulation results show that the foreshock disturbances from the Q -|| shock can excite magnetospheric ultralow-frequency waves, among which the toroidal Alfvén waves are examined. It is found that the foreshock wave spectrum covers a wide frequency range and matches the band of FLR harmonics after excluding the Doppler shift effects. The fundamental harmonic of field line resonances dominates and has the strongest wave power, and the higher the harmonic order, the weaker the corresponding wave power. The nodes and anti-nodes of the odd and even harmonics in the equatorial plane are also presented. In addition, as the local Alfvén speed increases earthward, the corresponding frequency of each harmonic increases. The field-aligned current in the cusp region indicative of the possibly observable aurora is found to be a result of magnetopause perturbation which is caused by the foreshock disturbances, and a global view substantiating this scenario is given. Finally, it is found that when the solar wind Mach number decreases, the strength of both field line resonance and field-aligned current decreases accordingly. 
    more » « less
  4. null (Ed.)
    Mesoscale (on the scales of a few minutes and a few R E ) magnetosheath and magnetopause perturbations driven by foreshock transients have been observed in the flank magnetotail. In this paper, we present the 3D global hybrid simulation results to show qualitatively the 3D structure of the flank magnetopause distortion caused by foreshock transients and its impacts on the tail magnetosphere and the ionosphere. Foreshock transient perturbations consist of a low-density core and high-density edge(s), thus, after they propagate into the magnetosheath, they result in magnetosheath pressure perturbations that distort magnetopause. The magnetopause is distorted locally outward (inward) in response to the dip (peak) of the magnetosheath pressure perturbations. As the magnetosheath perturbations propagate tailward, they continue to distort the flank magnetopause. This qualitative explains the transient appearance of the magnetosphere observed in the flank magnetosheath associated with foreshock transients. The 3D structure of the magnetosheath perturbations and the shape of the distorted magnetopause keep evolving as they propagate tailward. The transient distortion of the magnetopause generates compressional magnetic field perturbations within the magnetosphere. The magnetopause distortion also alters currents around the magnetopause, generating field-aligned currents (FACs) flowing in and out of the ionosphere. As the magnetopause distortion propagates tailward, it results in localized enhancements of FACs in the ionosphere that propagate anti-sunward. This qualitatively explains the observed anti-sunward propagation of the ground magnetic field perturbations associated with foreshock transients. 
    more » « less
  5. Abstract

    Foreshock transients can result in significant dynamic pressure perturbations downstream, causing the magnetopause to move locally outward and inward. These near‐magnetopause phenomena in turn generate magnetospheric field‐aligned currents (FACs). FACs driven by solar wind impulses are commonly found to be due to flow vortices, but it remains unclear whether the FACs driven by those localized foreshock transients are contributed by flow vortices or pressure gradients. We report on a fortuitous conjunction between the Magnetospheric Multiscale (MMS) mission, which was observing a foreshock transient at the flank of the bow shock, and the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission, immediately downstream of MMS, which was observing magnetopause disturbances arising from that transient. Using observations from the three THEMIS spacecraft to calculate local current density perturbations within the outward motion region of the magnetosphere, we find that flow vortices play a dominant role in generating the current there; the contribution from pressure gradients is one order of magnitude smaller. Using a global hybrid simulation that reproduces the observed foreshock transient perturbations, we traced the simulated FACs generated by the transient's interaction with the magnetopause. We find that in the outward magnetopause motion region the simulated FACs are driven by flow vortices, in agreement with THEMIS observations. Deeper inside the magnetosphere, the faster convection of bipolar flow vortices than the local magnetospheric flow leads to reversal of the simulated FACs. Our results improve our understanding of how foreshock transients disturb and energize the magnetosphere‐ionosphere system.

     
    more » « less
  6. Abstract

    Global simulations predict that the low‐latitude mantle may be an important pathway for the solar wind entry into the tail magnetosphere close to the current sheet when interplanetary magnetic field (IMF)Bydominates over IMFBz. To evaluate this entry mechanism in the near‐Earth tail (X ∼ −10–−20RE), we investigate the predictions from 3D global hybrid simulations as well as in situ observations by magnetospheric multiscale (MMS) spacecraft. The simulations predict that the low‐latitude mantle plasma can appear in the near‐Earth tail lobe extending inward approximately 5REfrom the flank magnetopause. The low‐latitude mantle plasma appears in the dawnside northern lobe and duskside southern lobe during positive IMFBy, while the opposite asymmetry is seen during negative IMFBy. After a change in the IMFBydirection arriving at the bow shock nose, it takes another ∼15–30 min for the asymmetry to completely reverse to the opposite sense in the near‐Earth tail. We present six MMS events in the tail lobe showing that the existence and absence of the low‐latitude mantle plasma is consistent with the predicted asymmetries. Statistical analysis of 5 years of MMS observations shows that the dependencies of the magnitudes of the lobe densities and tailward field‐aligned flow speeds on the IMFBydirections are consistent with the predicted contributions from the low‐latitude mantle plasma in the expected lobe regions.

     
    more » « less