Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a second-order, implicit numerical model for one-dimensional, large strain thaw consolidation of ice-rich, fine-grained permafrost. The phase composition of permafrost at sub-freezing temperatures is determined using an unfrozen water content model that accounts for both capillary and adsorptive unfrozen water. The model incorporates secondary compression to improve the accuracy of long-term thaw consolidation simulations. The algorithm incorporates conduction, advection, and phase change in heat transfer and simultaneous occurrence of primary consolidation and secondary compression. Benchmarking and verification of the model show good agreement with existing numerical models. The proposed model is validated against experimental observations. The model indicates that adsorbed unfrozen water dominates over a wide range of sub-freezing temperatures, while capillary unfrozen water freezes at temperatures just below the freezing point. Numerical simulations suggest that ignoring secondary compression can lead to underestimation of excess pore pressure and settlement during both thaw and post-thaw consolidation. Void ratio and average degree of consolidation are overestimated when secondary compression is not considered. The effect of secondary compression on excess pore pressure and void ratio during thawing becomes more pronounced in thicker, field-scale permafrost layers. Results from this study highlight the importance of considering adsorptive and capillary unfrozen water to determine permafrost composition and incorporating secondary compression in thaw consolidation modeling and thaw settlement estimation for long-term civil infrastructure planning in cold regions. The proposed model provides a comprehensive framework for simulating thaw consolidation processes in permafrost regions.more » « lessFree, publicly-accessible full text available January 1, 2027
-
The degradation of permafrost alters deformation and long-term strength, posing challenges to existing and future civil infrastructure in Northern Alaska. Long-term strength is a critical parameter in the design of civil projects; yet, to our best knowledge, data on the creep deformation and long-term strength of undisturbed permafrost in Northern Alaska remain limited. Soil particle fraction, unfrozen water content, temperature, and salinity may interactively affect creep deformation and long-term strength of permafrost; however, their interactive effects are not well understood. In this study, field samples of relatively undisturbed permafrost from the upper 1.5 m of the Arctic Coastal Plain near Utqiaġvik, Alaska, were first retrieved and analyzed. The permafrost was characterized as saline ice-rich silty sand and nonuniformly distributed ice. We conducted constant stress creep tests, unconfined compression strength tests, and unfrozen water content tests to assess the mechanical and physical properties of the permafrost cores. The results indicated that the long-term strength of the permafrost decreased by nearly 90% from −10°C to −2°C. At −10°C, the long-term strength increased by approximately 120% as the soil particle fraction rose from 0.14 to 0.26. The strengthening effect of soil particles diminished at higher temperatures and higher salinity due to the influence of unfrozen water. A quantitative tool has been developed to predict the long-term strength of ice-rich permafrost, incorporating the effects of soil particle fraction and temperature. The findings of this study can potentially support infrastructure design and planning in Northern Alaska in the context of a warming climate.more » « lessFree, publicly-accessible full text available January 1, 2027
-
This paper presents an implicit numerical model for one-dimensional thaw consolidation of saturated permafrost using finite volume approach. The model couples heat transfer with consolidation deformation and accounts for conduction, advection, phase change in heat transfer, and large strain in consolidation. The Crank–Nicolson method is used to obtain transient solutions. The overall approximation of the numerical scheme is of second-order accuracy. Numerical simulations are conducted to analyze the thaw consolidation behaviors in a finite soil layer. Numerical results indicate that, in a finite soil layer, thaw penetration and settlement have nonlinear relationships with the square root of time with decreasing rate. The excess pore water pressure and void ratio at the thaw front decrease with time. Thaw consolidation behaviors can be strongly influenced by the thermal conductivity of soil grains. The advection heat-transfer mechanism has a negligible effect on thaw consolidation in low-permeability soil.more » « lessFree, publicly-accessible full text available February 27, 2026
-
Advances in robotics represent a potential shift in the construction industry. Construction planning is planned based on craft work; it is necessary to emphasize external factors such as construction robotics. Improving constructability can enhance design-phase construction opportunities, thereby expanding the potential scope of robot operations. However, robotics are often neglected concerning constructability. Previous studies on constructability concentrated on human-based construction methods; hence, gaps remain in assessing constructability for robotics. To minimize the barriers in robotic construction, this paper presents a method for using a rule-based framework for robotic constructability assessment checks with the help of BIM. Focusing on CANVAS—a drywall finishing robot—this paper applies a BIM-based object-oriented model integrating with ROS to utilize constructability reasoning about robotic operations. A model of rule-checking for robotics in the case study is demonstrated and tested. The availability of design information in the model containing robotics is discussed, showing the need for assessing robotics-related constructability information to support an automated review of robotic constructability assessment. This paper applies a case study to validate use of the framework for robotic constructability assessment in the design phase, leading to an automated constructability assessment of construction robotics.more » « less
-
This paper presents a construction robot schema (CRS) for construction planners to facilitate decision-making and project planning in operating robotics. CRS is a database schema structure that was developed in our previous study, which can facilitate collecting and exchanging data of various construction robots based on the data requirements of the construction domain. We validated the applicability of the schema by the simulation of robotic construction operations. In addition, we conducted interviews with experts from the construction industry to validate the information in CRS. As a result, the schema was validated with minor revisions to some parameters. The characteristics of CRS compared to other types of robot schema are that its development and application are based on the perspective of the construction domain and are designed to cover different construction robots broadly. The conclusions highlight the contributions of the data schema use and applicability for the construction industry.more » « less
-
The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC–Au–NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C–Au–C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions.more » « less
-
Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning.more » « less
An official website of the United States government
