skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Washington, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The unmapped readspace of whole genome sequencing data tends to be large but is often ignored. We posit that it contains valuable signals of both human infection and contamination. Using unmapped and poorly aligned reads from whole genome sequences (WGS) of over 1000 families and nearly 5000 individuals, we present insights into common viral, bacterial, and computational contamination that plague whole genome sequencing studies. We present several notable results: (1) In addition to known contaminants such as Epstein-Barr virus and phiX, sequences from whole blood and lymphocyte cell lines contain many other contaminants, likely originating from storage, prep, and sequencing pipelines. (2) Sequencing plate and biological sample source of a sample strongly influence contamination profile. And, (3) Y-chromosome fragments not on the human reference genome commonly mismap to bacterial reference genomes. Both experiment-derived and computational contamination is prominent in next-generation sequencing data. Such contamination can compromise results from WGS as well as metagenomics studies, and standard protocols for identifying and removing contamination should be developed to ensure the fidelity of sequencing-based studies.

     
    more » « less
  2. Abstract Background

    Sequencing partial 16S rRNA genes is a cost effective method for quantifying the microbial composition of an environment, such as the human gut. However, downstream analysis relies on binning reads into microbial groups by either considering each unique sequence as a different microbe, querying a database to get taxonomic labels from sequences, or clustering similar sequences together. However, these approaches do not fully capture evolutionary relationships between microbes, limiting the ability to identify differentially abundant groups of microbes between a diseased and control cohort. We present sequence-based biomarkers (SBBs), an aggregation method that groups and aggregates microbes using single variants and combinations of variants within their 16S sequences. We compare SBBs against other existing aggregation methods (OTU clustering andMicrophenoorDiTaxafeatures) in several benchmarking tasks: biomarker discovery via permutation test, biomarker discovery via linear discriminant analysis, and phenotype prediction power. We demonstrate the SBBs perform on-par or better than the state-of-the-art methods in biomarker discovery and phenotype prediction.

    Results

    On two independent datasets, SBBs identify differentially abundant groups of microbes with similar or higher statistical significance than existing methods in both a permutation-test-based analysis and using linear discriminant analysis effect size. . By grouping microbes by SBB, we can identify several differentially abundant microbial groups (FDR <.1) between children with autism and neurotypical controls in a set of 115 discordant siblings.Porphyromonadaceae,Ruminococcaceae, and an unnamed species ofBlastocystiswere significantly enriched in autism, whileVeillonellaceaewas significantly depleted. Likewise, aggregating microbes by SBB on a dataset of obese and lean twins, we find several significantly differentially abundant microbial groups (FDR<.1). We observedMegasphaeraandSutterellaceaehighly enriched in obesity, andPhocaeicolasignificantly depleted. SBBs also perform on bar with or better than existing aggregation methods as features in a phenotype prediction model, predicting the autism phenotype with an ROC-AUC score of .64 and the obesity phenotype with an ROC-AUC score of .84.

    Conclusions

    SBBs provide a powerful method for aggregating microbes to perform differential abundance analysis as well as phenotype prediction. Our source code can be freely downloaded fromhttp://github.com/briannachrisman/16s_biomarkers.

     
    more » « less
  3. Abstract Background Many children with autism cannot receive timely in-person diagnosis and therapy, especially in situations where access is limited by geography, socioeconomics, or global health concerns such as the current COVD-19 pandemic. Mobile solutions that work outside of traditional clinical environments can safeguard against gaps in access to quality care. Objective The aim of the study is to examine the engagement level and therapeutic feasibility of a mobile game platform for children with autism. Methods We designed a mobile application, GuessWhat, which, in its current form, delivers game-based therapy to children aged 3 to 12 in home settings through a smartphone. The phone, held by a caregiver on their forehead, displays one of a range of appropriate and therapeutically relevant prompts (e.g., a surprised face) that the child must recognize and mimic sufficiently to allow the caregiver to guess what is being imitated and proceed to the next prompt. Each game runs for 90 seconds to create a robust social exchange between the child and the caregiver. Results We examined the therapeutic feasibility of GuessWhat in 72 children (75% male, average age 8 years 2 months) with autism who were asked to play the game for three 90-second sessions per day, 3 days per week, for a total of 4 weeks. The group showed significant improvements in Social Responsiveness Score-2 (SRS-2) total (3.97, p <0.001) and Vineland Adaptive Behavior Scales-II (VABS-II) socialization standard (5.27, p = 0.002) scores. Conclusion The results support that the GuessWhat mobile game is a viable approach for efficacious treatment of autism and further support the possibility that the game can be used in natural settings to increase access to treatment when barriers to care exist. 
    more » « less
  4. Background Autism spectrum disorder (ASD) is a developmental disorder characterized by deficits in social communication and interaction, and restricted and repetitive behaviors and interests. The incidence of ASD has increased in recent years; it is now estimated that approximately 1 in 40 children in the United States are affected. Due in part to increasing prevalence, access to treatment has become constrained. Hope lies in mobile solutions that provide therapy through artificial intelligence (AI) approaches, including facial and emotion detection AI models developed by mainstream cloud providers, available directly to consumers. However, these solutions may not be sufficiently trained for use in pediatric populations. Objective Emotion classifiers available off-the-shelf to the general public through Microsoft, Amazon, Google, and Sighthound are well-suited to the pediatric population, and could be used for developing mobile therapies targeting aspects of social communication and interaction, perhaps accelerating innovation in this space. This study aimed to test these classifiers directly with image data from children with parent-reported ASD recruited through crowdsourcing. Methods We used a mobile game called Guess What? that challenges a child to act out a series of prompts displayed on the screen of the smartphone held on the forehead of his or her care provider. The game is intended to be a fun and engaging way for the child and parent to interact socially, for example, the parent attempting to guess what emotion the child is acting out (eg, surprised, scared, or disgusted). During a 90-second game session, as many as 50 prompts are shown while the child acts, and the video records the actions and expressions of the child. Due in part to the fun nature of the game, it is a viable way to remotely engage pediatric populations, including the autism population through crowdsourcing. We recruited 21 children with ASD to play the game and gathered 2602 emotive frames following their game sessions. These data were used to evaluate the accuracy and performance of four state-of-the-art facial emotion classifiers to develop an understanding of the feasibility of these platforms for pediatric research. Results All classifiers performed poorly for every evaluated emotion except happy. None of the classifiers correctly labeled over 60.18% (1566/2602) of the evaluated frames. Moreover, none of the classifiers correctly identified more than 11% (6/51) of the angry frames and 14% (10/69) of the disgust frames. Conclusions The findings suggest that commercial emotion classifiers may be insufficiently trained for use in digital approaches to autism treatment and treatment tracking. Secure, privacy-preserving methods to increase labeled training data are needed to boost the models’ performance before they can be used in AI-enabled approaches to social therapy of the kind that is common in autism treatments. 
    more » « less