skip to main content

Search for: All records

Creators/Authors contains: "Watanabe, Kenji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon that features quantized Hall resistance at zero magnetic field. We report the QAHE in a rhombohedral pentalayer graphene-monolayer tungsten disulfide (WS2) heterostructure. Distinct from other experimentally confirmed QAHE systems, this system has neither magnetic element nor moiré superlattice effect. The QAH states emerge at charge neutrality and feature Chern numbersC= ±5 at temperatures of up to about 1.5 kelvin. This large QAHE arises from the synergy of the electron correlation in intrinsic flat bands of pentalayer graphene, the gate-tuning effect, and the proximity-induced Ising spin-orbit coupling. Our experiment demonstrates the potential of crystalline two-dimensional materials for intertwined electron correlation and band topology physics and may enable a route for engineering chiral Majorana edge states.

    more » « less
    Free, publicly-accessible full text available May 10, 2025
  2. Free, publicly-accessible full text available April 12, 2025
  3. Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice1. A variety of two-dimensional systems have shown evidence for Wigner crystals2,3,4,5,6,7,8,9,10,11 (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized. Neither the identification of the WC symmetry nor direct investigation of its melting has been accomplished. Here we use high-resolution scanning tunnelling microscopy measurements to directly image a magnetic-field-induced electron WC in Bernal-stacked bilayer graphene and examine its structural properties as a function of electron density, magnetic field and temperature. At high fields and the lowest temperature, we observe a triangular lattice electron WC in the lowest Landau level. The WC possesses the expected lattice constant and is robust between filling factor ν ≈ 0.13 and ν ≈ 0.38 except near fillings where it competes with fractional quantum Hall states. Increasing the density or temperature results in the melting of the WC into a liquid phase that is isotropic but has a modulated structure characterized by the Bragg wavevector of the WC. At low magnetic fields, the WC unexpectedly transitions into an anisotropic stripe phase, which has been commonly anticipated to form in higher Landau levels. Analysis of individual lattice sites shows signatures that may be related to the quantum zero-point motion of electrons in the WC lattice. 
    more » « less
    Free, publicly-accessible full text available April 11, 2025
  4. Single-photon emitters serve as building blocks for many emerging concepts in quantum photonics. The recent identification of bright, tunable and stable emitters in hexagonal boron nitride (hBN) has opened the door to quantum platforms operating across the infrared to ultraviolet spectrum. Although it is widely acknowledged that defects are responsible for single-photon emitters in hBN, crucial details regarding their origin, electronic levels and orbital involvement remain unknown. Here we employ a combination of resonant inelastic X-ray scattering and photoluminescence spectroscopy in defective hBN, unveiling an elementary excitation at 285 meV that gives rise to a plethora of harmonics correlated with single-photon emitters. We discuss the importance of N π* anti-bonding orbitals in shaping the electronic states of the emitters. The discovery of elementary excitations in hBN provides fundamental insights into quantum emission in low-dimensional materials, paving the way for future investigations in other platforms. 
    more » « less
    Free, publicly-accessible full text available April 23, 2025
  5. Abstract

    Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton “spin” orders in WSe2/WS2moiré superlattices. We find evidence of an in-plane (xy) order of exciton “spin”—here, valley pseudospin—around exciton fillingvex = 1, which strongly suppresses the out-of-plane “spin” polarization. Upon increasingvexor applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM-z) spin order that spontaneously enhances the “spin” polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose–Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices.

    more » « less
  6. Free, publicly-accessible full text available April 3, 2025
  7. Confining materials to two-dimensional forms changes the behaviour of the electrons and enables the creation of new devices. However, most materials are challenging to produce as uniform, thin crystals. Here we present a synthesis approach where thin crystals are grown in a nanoscale mould defined by atomically flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mould made of hexagonal boron nitride, we grow ultraflat bismuth crystals less than 10 nm thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-moulded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov–de Haas quantum oscillations originating from the (111) surface state Landau levels. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW mould growth technique establishes a platform for electronic studies and control of bismuth’s Rashba surface states and topological boundary modes1,2,3. Beyond bismuth, the vdW-moulding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  8. Free, publicly-accessible full text available February 1, 2025
  9. Nonreciprocal superconducting devices have attracted growing interest in recent years as they potentially enable directional charge transport for applications in superconducting quantum circuits. Specifically, the superconducting diode effect has been explored in two-terminal devices that exhibit superconducting transport in one current direction while showing dissipative transport in the opposite direction. Here, we exploit multiterminal Josephson junctions (MTJJs) to engineer magnetic-field-free nonreciprocity in multiport networks. We show that when treated as a two-port electrical network, a three terminal Josephson junction (JJ) with an asymmetric graphene region exhibits reconfigurable two-port nonreciprocity. We observe nonreciprocal (reciprocal) transport between superconducting terminals with broken (preserved) spatial mirror symmetry. We explain our observations by considering a circuit network of JJs with different critical currents. 
    more » « less
    Free, publicly-accessible full text available March 8, 2025
  10. Free, publicly-accessible full text available February 22, 2025