skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wei, Peng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Urban air mobility (UAM) is an emerging air transportation mode to alleviate the ground traffic burden and achieve zero direct aviation emissions. Due to the potential economic scaling effects, the UAM traffic flow is expected to increase dramatically once implemented, and its market can be substantially large. To be prepared for the era of UAM, we study the fair and risk‐averse urban air mobility resource allocation model (FairUAM) under passenger demand and airspace capacity uncertainties for fair, safe, and efficient aircraft operations. FairUAM is a two‐stage model, where the first stage is the aircraft resource allocation, and the second stage is to fairly and efficiently assign the ground and airspace delays to each aircraft provided the realization of random airspace capacities and passenger demand. We show that FairUAM is NP‐hard even when there is no delay assignment decision or no aircraft allocation decision. Thus, we recast FairUAM as a mixed‐integer linear program (MILP) and explore model properties and strengthen the model formulation by developing multiple families of valid inequalities. The stronger formulation allows us to develop a customized exact decomposition algorithm with both benders and L‐shaped cuts, which significantly outperforms the off‐the‐shelf solvers. Finally, we numerically demonstrate the effectiveness of the proposed method and draw managerial insights when applying FairUAM to a real‐world network. 
    more » « less
  2. As a promising ultrawide bandgap oxide semiconductor material in the spinel family, magnesium gallate (MgGa2O4) exhibits great potential applications in power electronics, transparent electronics, and deep ultraviolet optoelectronics. However, few studies reveal its photoluminescence (PL) properties. In this work, MgGa2O4 films were grown by using oxygen plasma assisted molecular beam epitaxy. The bandgap of MgGa2O4 spinel films is determined to be around 5.4–5.5 eV, and all samples have transmittance over 90% in the visible spectral range. X-ray diffraction patterns confirmed that the spinel films were grown highly along ⟨111⟩ oriented. Power and temperature dependent PL studies were investigated. Optical transitions involving self-trapped hole, oxygen vacancy deep donor, and magnesium atom on gallium site deep acceptor levels were revealed. 
    more » « less
  3. A localized Zeeman field, intensified at heterostructure interfaces, could play a crucial role in a broad area including spintronics and unconventional superconductors. Conventionally, the generation of a local Zeeman field is achieved through magnetic exchange coupling with a magnetic material. However, magnetic elements often introduce defects, which could weaken or destroy superconductivity. Alternatively, the coupling between a superconductor with strong spin-orbit coupling and a nonmagnetic chiral material could serve as a promising approach to generate a spin-active interface. Here, we leverage an interface superconductor, namely, induced superconductivity in noble metal surface states, to probe the spin-active interface. Our results unveil an enhanced interface Zeeman field, which selectively closes the surface superconducting gap while preserving the bulk superconducting pairing. The chiral material, i.e., trigonal tellurium, also induces Andreev bound states (ABS) exhibiting spin polarization. The field dependence of ABS manifests a substantially enhanced interface Landég-factor (geff~ 12), thereby corroborating the enhanced interface Zeeman energy. 
    more » « less
  4. This paper introduces an innovative approach to 3D environmental mapping through the integration of a compact, handheld sensor package with a two-stage sensor fusion pipeline. The sensor package, incorporating LiDAR, IMU, RGB, and thermal cameras, enables comprehensive and robust 3D mapping of various environments. By leveraging Simultaneous Localization and Mapping (SLAM) and thermal imaging, our solution offers good performance in conditions where global positioning is unavailable and in visually degraded environments. The sensor package runs a real-time LiDAR-Inertial SLAM algorithm, generating a dense point cloud map that accurately reconstructs the geometric features of the environment. Following the acquisition of that point cloud, we post-process these data by fusing them with images from the RGB and thermal cameras and produce a detailed, color-enriched 3D map that is useful and adaptable to different mission requirements. We demonstrated our system in a variety of scenarios, from indoor to outdoor conditions, and the results showcased the effectiveness and applicability of our sensor package and fusion pipeline. This system can be applied in a wide range of applications, ranging from autonomous navigation to smart agriculture, and has the potential to make a substantial benefit across diverse fields. 
    more » « less
  5. Abstract Reliable and controllable growth of two-dimensional (2D) hexagonal boron nitride (h-BN) is essential for its wide range of applications. Substrate engineering is one of the critical factors that influence the growth of the epitaxial h-BN films. Here, we report the growth of monolayer h-BN on Ni (111) substrates incorporated with oxygen atoms via molecular beam epitaxy. It was found that the increase of incorporated oxygen concentration in the Ni substrate through a pretreatment process prior to the h-BN growth step would have an adverse effect on the morphology and growth rate of 2D h-BN. Under the same growth condition, h-BN monolayer coverage decreases exponentially as the amount of oxygen incorporated into Ni (111) increases. Density functional theory calculations and climbing image nudged elastic band (CI-NEB) method reveal that the substitutional oxygen atoms can increase the diffusion energy barrier of B and N atoms on Ni (111) thereby inhibiting the growth of h-BN films. As-grown large-area h-BN monolayer films and fabricated Al/h-BN/Ni (MIM) nanodevices were comprehensively characterized to evaluate the structural, optical and electrical properties of high-quality monolayers. Direct tunneling mechanism and high breakdown strength of ∼11.2 MV cm−1are demonstrated for the h-BN monolayers grown on oxygen-incorporated Ni (111) substrates, indicating that these films have high quality. This study provides a unique example that heterogeneous catalysis principles can be applied to the epitaxy of 2D crystals in solid state field. Similar strategies can be used to grow other 2D crystalline materials, and are expected to facilitate the development of next generation devices based on 2D crystals. 
    more » « less