skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weiss, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intensive youth STEM programs serve high school students in informal learning spaces such as museums and community centers. They engage participants over weeks, months, or years, focusing on long-term STEM out- comes, especially for populations historically marginalized in STEM fields. However, many of these programs operate independently or in silos, limiting opportunities for collective learning and improvement. Isolation is driven by factors such as diverse organizational types, funding sources, program sizes, content focus, and research and evaluation capacities. Furthermore, conducting longitudinal studies to track participant outcomes is rare and expensive. To address these challenges, this paper proposes a conversation toward the establishment of a collaborative network to support research collaboration and knowledge integration, exchange, and translation. Such a network would strengthen the capacity of these programs, improve long-term outcomes for participants, and contribute to the broader STEM education and career research community, enhancing the overall impact of intensive youth STEM programs. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Fluency---described as the ``coordinated meshing of joint activities between members of a well-synchronized team''---is essential to human-robot team success. Human teams achieve fluency through rich, often mostly implicit, communication. A key challenge in bridging the gap between industry and academia is understanding what influences human perception of a fluent team experience to better optimize human-robot fluency in industrial environments. This paper addresses this challenge by developing an online experiment featuring videos that vary the timing of human and robot actions to influence perceived team fluency. Our results support three broad conclusions. First, we did not see differences across most subjective fluency measures. Second, people report interactions as more fluent as teammates stay more active. Third, reducing delays when humans' tasks depend on robots increases perceived team fluency. 
    more » « less
  3. Lead chalcogenide quantum dots (QDs) are promising acceptors for photovoltaic devices that harness the singlet fission (SF) mechanism. The rate of singlet fission of polyacenes in the presence of QDs is a critical parameter in determining the performance of such devices. The present study demonstrates that the rates of SF in a pentacene derivative, 6,13-diphenylanthracene (DPP), are modulated by forming coaggregates with PbS QDs in aqueous dispersions. PbS QDs generally accelerate SF within DPP aggregates, and the extent of acceleration depends on the size of the QD. The average rate of SF increases from 0.074 ps −1 for DPP-only aggregates to 0.37 ps −1 within DPP-D co-aggregates for QDs with radius 2.2 nm, whereas co-aggregation with the smallest ( r = 1.6 nm) and largest ( r = 2.7 nm) QDs we tried only slightly change the SF rate. The rate variation is associated with (i) the density of surface ligands, which is influenced by the faceting of the PbS surface, and (ii) the local dielectric constant for DPP. To accelerate SF, the ligands should be dense enough to provide sufficient affinity for DPP aggregates and effectively perturb the perpendicular alignment of DPP monomers within aggregates to increase the intermolecular coupling that promotes SF, but should not be too dense so as to form a low dielectric environment that disfavors SF. The study suggests that it is critical to consider the influence of the microenvironment of the QD surface on photophysical processes when fabricating QD/organic hybrid devices. 
    more » « less