Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2023
-
Promising results have been achieved recently in category-level manipulation that generalizes across object instances. Nevertheless, it often requires expensive real-world data collection and manual specification of semantic keypoints for each object category and task. Additionally, coarse keypoint predictions and ignoring intermediate action sequences hinder adoption in complex manipulation tasks beyond pick-and-place. This work proposes a novel, category-level manipulation framework that leverages an object-centric, category-level representation and model-free 6 DoF motion tracking. The canonical object representation is learned solely in simulation and then used to parse a category-level, task trajectory from a single demonstration video. The demonstration is reprojected to a target trajectory tailored to a novel object via the canonical representation. During execution, the manipulation horizon is decomposed into longrange, collision-free motion and last-inch manipulation. For the latter part, a category-level behavior cloning (CatBC) method leverages motion tracking to perform closed-loop control. CatBC follows the target trajectory, projected from the demonstration and anchored to a dynamically selected category-level coordinate frame. The frame is automatically selected along the manipulation horizon by a local attention mechanism. This framework allows to teach different manipulation strategies by solely providing a single demonstration, without complicated manual programming. Extensive experiments demonstrate its efficacy in a rangemore »Free, publicly-accessible full text available June 29, 2023
-
Task-relevant grasping is critical for industrial assembly, where downstream manipulation tasks constrain the set of valid grasps. Learning how to perform this task, however, is challenging, since task-relevant grasp labels are hard to define and annotate. There is also yet no consensus on proper representations for modeling or off-the-shelf tools for performing task-relevant grasps. This work proposes a framework to learn task-relevant grasping for industrial objects without the need of time-consuming real-world data collection or manual annotation. To achieve this, the entire framework is trained solely in simulation, including supervised training with synthetic label generation and self-supervised, hand-object interaction. In the context of this framework, this paper proposes a novel, object-centric canonical representation at the category level, which allows establishing dense correspondence across object instances and transferring task-relevant grasps to novel instances. Extensive experiments on task-relevant grasping of densely-cluttered industrial objects are conducted in both simulation and real-world setups, demonstrating the effectiveness of the proposed framework.Free, publicly-accessible full text available May 25, 2023
-
Free, publicly-accessible full text available April 1, 2023
-
Acquiring a precise model is a challenging task for many important robotic tasks and systems - including in-hand manipulation using underactuated, adaptive hands. Learning stochastic, data-driven models is a promising alternative as they provide not only a way to propagate forward the system dynamics, but also express the uncertainty present in the collected data. Therefore, such models en- able planning in the space of state distributions, i.e., in the belief space. This paper proposes a planning framework that employs stochastic, learned models, which ex- press a distribution of states as a set of particles. The integration achieves anytime behavior in terms of returning paths of increasing quality under constraints for the probability of success to achieve a goal. The focus of this effort is on pushing the efficiency of the overall methodology despite the notorious computational hardness of belief-space planning. Experiments show that the proposed framework enables reaching a desired goal with higher success rate compared to alternatives in sim- ple benchmarks. This work also provides an application to the motivating domain of in-hand manipulation with underactuated, adaptive hands, both in the case of physically-simulated experiments as well as demonstrations with a real hand.