skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muscarella, Chance"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neutrinoless double beta decay is one of the most sensitive probes for new physics beyond the Standard Model of particle physics. One of the isotopes under investigation is Xe 136 , which would double beta decay into Ba 136 . Detecting the single Ba 136 daughter provides a sort of ultimate tool in the discrimination against backgrounds. Previous work demonstrated the ability to perform single atom imaging of Ba atoms in a single-vacancy site of a solid xenon matrix. In this paper, the effort to identify signal from individual barium atoms is extended to Ba atoms in a hexa-vacancy site in the matrix and is achieved despite increased photobleaching in this site. Abrupt fluorescence turn-off of a single Ba atom is also observed. Significant recovery of fluorescence signal lost through photobleaching is demonstrated upon annealing of Ba deposits in the Xe ice. Following annealing, it is observed that Ba atoms in the hexa-vacancy site exhibit antibleaching while Ba atoms in the tetra-vacancy site exhibit bleaching. This may be evidence for a matrix site transfer upon laser excitation. Our findings offer a path of continued research toward tagging of Ba daughters in all significant sites in solid xenon. Published by the American Physical Society2024 
    more » « less
  2. In literature, Nocardia cholesterolicum NRRL 5767 (NC NRRL5767) is well-known for its ability to transform ~95% of added oleic acid, an abundant agricultural commodity, to value-added product of 10-hydroxystearic acid (10-HSA). A small amount of unwanted 10-ketostearic acid (10-KSA) was also produced. This microbe also transforms ~80% of added linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid (10-OH-12-OD) (an isomer of ricinoleic acid) with minor 10-oxo-12(Z)-octadecenoic acid (10-oxo-12-OD). The conversion of oleic acid to 10-HSA and then to 10-KSA (or linoleic acid to 10-OH-12-OD and then to 10-oxo-12-OD) is catalyzed by oleate hydratase and secondary alcohol dehydrogenase (2o-ADH), respectively. The objective of this project was to knockout the 2o-ADH gene in NC NRRL5767 so that the sole biotransformation product from oleic acid would be 10-HSA. Here, we report construction of CRISPR/Cas9/sgRNA chimeric plasmid that specifically target 5’ coding region of the 2o-ADH gene by Golden Gate Assembly. The construct was confirmed by DNA sequencing and transformed into NC NRRL 5767 via electroporation. The transformants were selected by apramycin resistance and screened for the presence of the target insert (crRNA) by PCR. The ability of the selected transformants to transform oleic acid to 10-HSA was screened by TLC and further confirmed by GC-MS. Our results showed that two of the transformants produced only 10-HSA with no detectable 10-KSA from oleic acid suggesting successful knockout of the 2o-ADH gene. Final confirmation came from the isolation of genomic DNA from these two transformants and the wild type NC NRRL5767 (used as DNA template) and using 17 primers (locate at different positions along the 2o-ADH gene and the 5’ upstream of this gene) for PCR. To our best knowledge, this is the first report to knockout the target gene in Nocardia species by CRISPR-Cas9 technology. 
    more » « less
  3. Electron-neutrino charged-current interactions with xenon nuclei were modeled in the nEXO neutrinoless double- β decay detector ( 5 metric ton, 90% Xe 136 , 10% Xe 134 ) to evaluate its sensitivity to supernova neutrinos. Predictions for event rates and detectable signatures were modeled using the Model of Argon Reaction Low Energy Yields (MARLEY) event generator. We find good agreement between MARLEY’s predictions and existing theoretical calculations of the inclusive cross sections at supernova neutrino energies. The interactions modeled by MARLEY were simulated within the nEXO simulation framework and were run through an example reconstruction algorithm to determine the detector’s efficiency for reconstructing these events. The simulated data, incorporating the detector response, were used to study the ability of nEXO to reconstruct the incident electron-neutrino spectrum and these results were extended to a larger xenon detector of the same isotope enrichment. We estimate that nEXO will be able to observe electron-neutrino interactions with xenon from supernovae as far as 5–8 kpc from Earth, while the ability to reconstruct incident electron-neutrino spectrum parameters from observed interactions in nEXO is limited to closer supernovae. Published by the American Physical Society2024 
    more » « less
  4. Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates. 
    more » « less
    Free, publicly-accessible full text available December 9, 2026
  5. Abstract We report the observation of gravitational waves from two binary black hole coalescences during the fourth observing run of the LIGO–Virgo–KAGRA detector network, GW241011 and GW241110. The sources of these two signals are characterized by rapid and precisely measured primary spins, nonnegligible spin–orbit misalignment, and unequal mass ratios between their constituent black holes. These properties are characteristic of binaries in which the more massive object was itself formed from a previous binary black hole merger and suggest that the sources of GW241011 and GW241110 may have formed in dense stellar environments in which repeated mergers can take place. As the third-loudest gravitational-wave event published to date, with a median network signal-to-noise ratio of 36.0, GW241011 furthermore yields stringent constraints on the Kerr nature of black holes, the multipolar structure of gravitational-wave generation, and the existence of ultralight bosons within the mass range 10−13–10−12eV. 
    more » « less
    Free, publicly-accessible full text available October 28, 2026
  6. Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses 13 7 18 + 23 M and 10 1 50 + 22 M (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of 0.4 0 0.25 + 0.27 , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— 0.9 0 0.19 + 0.10 and 0.8 0 0.52 + 0.20 , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130Mshould be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200Mform through gravitational-wave-driven mergers. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026
  7. This Letter reports the first measurement of the oscillation amplitude and frequency of reactor antineutrinos at Daya Bay via neutron capture on hydrogen using 1958 days of data. With over 3.6 million signal candidates, an optimized candidate selection, improved treatment of backgrounds and efficiencies, refined energy calibration, and an energy response model for the capture-on-hydrogen sensitive region, the relative ν ¯ e rates and energy spectra variation among the near and far detectors gives sin 2 2 θ 13 = 0.075 9 0.0049 + 0.0050 and Δ m 32 2 = ( 2.7 2 0.15 + 0.14 ) × 10 3 eV 2 assuming the normal neutrino mass ordering, and Δ m 32 2 = ( 2.8 3 0.14 + 0.15 ) × 10 3 eV 2 for the inverted neutrino mass ordering. This estimate of sin 2 2 θ 13 is consistent with and essentially independent from the one obtained using the capture-on-gadolinium sample at Daya Bay. The combination of these two results yields sin 2 2 θ 13 = 0.0833 ± 0.0022 , which represents an 8% relative improvement in precision regarding the Daya Bay full 3158-day capture-on-gadolinium result. Published by the American Physical Society2024 
    more » « less