skip to main content

Search for: All records

Creators/Authors contains: "Wetzel, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    The radial acceleration relation (RAR) connects the total gravitational acceleration of a galaxy at a given radius, atot(r), with that accounted for by baryons at the same radius, abar(r). The shape and tightness of the RAR for rotationally-supported galaxies have characteristics in line with MOdified Newtonian Dynamics (MOND) and can also arise within the cosmological constant + cold dark matter (ΛCDM) paradigm. We use zoom simulations of 20 galaxies with stellar masses of M⋆ ≃ 107–11 M⊙ to study the RAR in the FIRE-2 simulations. We highlight the existence of simulated galaxies with non-monotonic RAR tracks that ‘hook’ down from the average relation. These hooks are challenging to explain in Modified Inertia theories of MOND, but naturally arise in all of our ΛCDM-simulated galaxies that are dark-matter dominated at small radii and have feedback-induced cores in their dark matter haloes. We show, analytically and numerically, that downward hooks are expected in such cored haloes because they have non-monotonic acceleration profiles. We also extend the relation to accelerations below those traced by disc galaxy rotation curves. In this regime, our simulations exhibit ‘bends’ off of the MOND-inspired extrapolation of the RAR, which, at large radii, approach atot ≈ abar/fb, where fb is the cosmic baryon fraction. Future efforts to search for these hooks and bends in real galaxies will provide interesting tests for MOND and ΛCDM.

    more » « less

    Understanding the evolution of satellite galaxies of the Milky Way (MW) and M31 requires modelling their orbital histories across cosmic time. Many works that model satellite orbits incorrectly assume or approximate that the host halo gravitational potential is fixed in time and is spherically symmetric or axisymmetric. We rigorously benchmark the accuracy of such models against the FIRE-2 cosmological baryonic simulations of MW/M31-mass haloes. When a typical surviving satellite fell in ($3.4\!-\!9.7\, \rm {Gyr}$ ago), the host halo mass and radius were typically 26–86 per cent of their values today, respectively. Most of this mass growth of the host occurred at small distances, $r\lesssim 50\, \rm {kpc}$, opposite to dark matter only simulations, which experience almost no growth at small radii. We fit a near-exact axisymmetric gravitational potential to each host at z = 0 and backward integrate the orbits of satellites in this static potential, comparing against the true orbit histories in the simulations. Orbital energy and angular momentum are not well conserved throughout an orbital history, varying by 25 per cent from their current values already $1.6\!-\!4.7\, \rm {Gyr}$ ago. Most orbital properties are minimally biased, ≲10 per cent, when averaged across the satellite population as a whole. However, for a single satellite, the uncertainties are large: recent orbital properties, like the most recent pericentre distance, typically are ≈20 per cent uncertain, while earlier events, like the minimum pericentre or the infall time, are ≈40–80 per cent uncertain. Furthermore, these biases and uncertainties are lower limits, given that we use near-exact host mass profiles at z = 0.

    more » « less

    We study the kinematics of stars both at their formation and today within 14 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. We quantify the relative importance of cosmological disc settling and post-formation dynamical heating. We identify three eras: a Pre-Disc Era (typically ≳ 8 Gyr ago), when stars formed on dispersion-dominated orbits; an Early-Disc Era (≈8–4 Gyr ago), when stars started to form on rotation-dominated orbits but with high velocity dispersion, σform; and a Late-Disc Era (≲ 4 Gyr ago), when stars formed with low σform. σform increased with time during the Pre-Disc Era, peaking ≈8 Gyr ago, then decreased throughout the Early-Disc Era as the disc settled and remained low throughout the Late-Disc Era. By contrast, the dispersion measured today, σnow, increases monotonically with age because of stronger post-formation heating for Pre-Disc stars. Importantly, most of σnow was in place at formation, not added post-formation, for stars younger than ≈10 Gyr. We compare the evolution of the three velocity components: at all times, σR, form > σϕ, form > σZ, form. Post-formation heating primarily increased σR at ages ≲ 4 Gyr but acted nearly isotropically for older stars. The kinematics of young stars in FIRE-2 broadly agree with the range observed across the MW, M31, M33, and PHANGS-MUSE galaxies. The lookback time that the disc began to settle correlates with its dynamical state today: earlier-settling galaxies currently form colder discs. Including stellar cosmic-ray feedback does not significantly change disc rotational support at fixed stellar mass.

    more » « less
  4. Abstract

    Recent discoveries of a significant population of bright galaxies at cosmic dawnz10have enabled critical tests of cosmological galaxy formation models. In particular, the bright end of the galaxys’ UV luminosity functions (UVLFs) appear higher than predicted by many models. Using approximately 25,000 galaxy snapshots at 8 ≤z≤ 12 in a suite of FIRE-2 cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project, we show that the observed abundance of UV-bright galaxies at cosmic dawn is reproduced in these simulations with a multichannel implementation of standard stellar feedback processes, without any fine-tuning. Notably, we find no need to invoke previously suggested modifications, such as a nonstandard cosmology, a top-heavy stellar initial mass function, or a strongly enhanced star formation efficiency. We contrast the UVLFs predicted by bursty star formation in these original simulations to those derived from star formation histories (SFHs) smoothed over prescribed timescales (e.g., 100 Myr). The comparison demonstrates that the strongly time-variable SFHs predicted by the FIRE simulations play a key role in correctly reproducing the observed, bright-end UVLFs at cosmic dawn: the bursty SFHs induce order-or-magnitude changes in the abundance of UV-bright (MUV≲ −20) galaxies atz≳ 10. The predicted bright-end UVLFs are consistent with both the spectroscopically confirmed population and the photometrically selected candidates. We also find good agreement between the predicted and observationally inferred integrated UV luminosity densities, which evolve more weakly with redshift in FIRE than suggested by some other models.

    more » « less

    Observational studies are finding stars believed to be relics of the earliest stages of hierarchical mass assembly of the Milky Way (i.e. proto-galaxy). In this work, we contextualize these findings by studying the masses, ages, spatial distributions, morphology, kinematics, and chemical compositions of proto-galaxy populations from the 13 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. Our findings indicate that proto-Milky Way populations: (i) can have a stellar mass range between 1 × 108 < M⋆ < 2 × 1010 [M⊙], a virial mass range between 3 × 1010 < M⋆ < 6 × 1011 [M⊙], and be as young as 8 ≲ Age ≲ 12.8 [Gyr] (1 ≲ z ≲ 6); (ii) are pre-dominantly centrally concentrated, with $\sim 50~{{\ \rm per\ cent}}$ of the stars contained within 5–10 kpc; (iii) on average show weak but systematic net rotation in the plane of the host’s disc at z = 0 (i.e. 0.25 ≲ 〈κ/κdisc〉 ≲ 0.8); (iv) present [α/Fe]-[Fe/H] compositions that overlap with the metal-poor tail of the host’s old disc; and (v) tend to assemble slightly earlier in Local Group-like environments than in systems in isolation. Interestingly, we find that $\sim 60~{{\ \rm per\ cent}}$ of the proto-Milky Way galaxies are comprised by 1 dominant system (1/5 ≲M⋆/M⋆, proto-MilkyWay≲ 4/5) and 4–5 lower mass systems (M⋆/M⋆, proto-MilkyWay≲ 1/10); the other $\sim 40~{{\ \rm per\ cent}}$ are comprised by 2 dominant systems and 3–4 lower mass systems. These massive/dominant proto-Milky Way fragments can be distinguished from the lower mass ones in chemical-kinematic samples, but appear (qualitatively) indistinguishable from one another. Our results could help observational studies disentangle if the Milky Way formed from one or two dominant systems.

    more » « less

    Low-mass galaxies are highly susceptible to environmental effects that can efficiently quench star formation. We explore the role of ram pressure in quenching low-mass galaxies ($M_{*}\sim 10^{5}{-}10^{9}\, \rm {M}_{\odot }$) within 2 Mpc of Milky Way (MW) hosts using the FIRE-2 simulations. Ram pressure is highly variable across different environments, within individual MW haloes, and for individual low-mass galaxies over time. The impulsiveness of ram pressure – the maximum ram pressure scaled to the integrated ram pressure prior to quenching – correlates with whether a galaxy is quiescent or star forming. The time-scale between maximum ram pressure and quenching is anticorrelated with impulsiveness, such that high impulsiveness corresponds to quenching time-scales <1 Gyr. Galaxies in low-mass groups ($M_\mathrm{*,host}10^{7}{-}10^{9}\, \rm {M}_{\odot }$) outside of MW haloes experience typical ram pressure only slightly lower than ram pressure on MW satellites, helping to explain effective quenching via group preprocessing. Ram pressure on MW satellites rises sharply with decreasing distance to the host, and, at a fixed physical distance, more recent pericentre passages are typically associated with higher ram pressure because of greater gas density in the inner host halo at late times. Furthermore, the ram pressure and gas density in the inner regions of Local Group-like paired host haloes are higher at small angles off the host galaxy disc compared to isolated hosts. The quiescent fraction of satellites within these low-latitude regions is also elevated in the simulations and observations, signaling possible anisotropic quenching via ram pressure around MW-mass hosts.

    more » « less

    A variety of observational campaigns seek to test dark matter models by measuring dark matter subhaloes at low masses. Despite their predicted lack of stars, these subhaloes may be detectable through gravitational lensing or via their gravitational perturbations on stellar streams. To set measurable expectations for subhalo populations within Lambda cold dark matter, we examine 11 Milky Way (MW)-mass haloes from the FIRE-2 baryonic simulations, quantifying the counts and orbital fluxes for subhaloes with properties relevant to stellar stream interactions: masses down to $10^{6}\, \text{M}_\odot$, distances ≲50 kpc of the galactic centre, across z = 0 − 1 (tlookback = 0–8 Gyr). We provide fits to our results and their dependence on subhalo mass, distance, and lookback time, for use in (semi)analytical models. A typical MW-mass halo contains ≈16 subhaloes $\gt 10^{7}\, \text{M}_\odot$ (≈1 subhalo $\gt 10^{8}\, \text{M}_\odot$) within 50 kpc at z ≈ 0. We compare our results with dark matter-only versions of the same simulations: because they lack a central galaxy potential, they overpredict subhalo counts by 2–10×, more so at smaller distances. Subhalo counts around a given MW-mass galaxy declined over time, being ≈10× higher at z = 1 than at z ≈ 0. Subhaloes have nearly isotropic orbital velocity distributions at z ≈ 0. Across our simulations, we also identified 4 analogues of Large Magellanic Cloud satellite passages; these analogues enhance subhalo counts by 1.4–2.1 times, significantly increasing the expected subhalo population around the MW today. Our results imply an interaction rate of ∼5 per Gyr for a stream like GD-1, sufficient to make subhalo–stream interactions a promising method of measuring dark subhaloes.

    more » « less
  8. Abstract

    The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for.

    more » « less
  9. Abstract

    We study how supersonic streaming velocities of baryons relative to dark matter—a large-scale effect imprinted at recombination and coherent over ∼3 Mpc scales—affect the formation of dwarf galaxies atz≳ 5. We perform cosmological hydrodynamic simulations, including and excluding streaming velocities, in regions centered on halos withMvir(z= 0) ≈ 1010M; the simulations are part of the Feedback In Realistic Environments (FIRE) project and run with FIRE-3 physics. Our simulations comprise many thousands of systems with halo masses betweenMvir= 2 × 105Mand 2 × 109Min the redshift rangez= 20–5. A few hundred of these galaxies form stars and have stellar masses ranging from 100 to 107M. While star formation is globally delayed by approximately 50 Myr in the streaming relative to nonstreaming simulations and the number of luminous galaxies is correspondingly suppressed at high redshift in the streaming runs, these effects decay with time. Byz= 5, the properties of the simulated galaxies are nearly identical in the streaming versus nonstreaming runs, indicating that any effects of streaming velocities on the properties of galaxies at the mass scale of classical dwarfs and larger do not persist toz= 0.

    more » « less
  10. ABSTRACT We introduce a suite of cosmological volume simulations to study the evolution of galaxies as part of the Feedback in Realistic Environments project. FIREbox, the principal simulation of the present suite, provides a representative sample of galaxies (∼1000 galaxies with $M_{\rm star}\gt 10^8\, M_\odot$ at z  = 0) at a resolution ($\Delta {}x\sim {}20\, {\rm pc}$ , $m_{\rm b}\sim {}6\times {}10^4\, M_\odot$ ) comparable to state-of-the-art galaxy zoom-in simulations. FIREbox captures the multiphase nature of the interstellar medium in a fully cosmological setting (L = 22.1 Mpc) thanks to its exceptionally high dynamic range (≳106) and the inclusion of multichannel stellar feedback. Here, we focus on validating the simulation predictions by comparing to observational data. We find that star formation rates, gas masses, and metallicities of simulated galaxies with $M_{\rm star}\lt 10^{10.5-11}\, M_\odot$ broadly agree with observations. These galaxy scaling relations extend to low masses ($M_{\rm star}\sim {}10^7\, M_\odot$ ) and follow a (broken) power-law relationship. Also reproduced are the evolution of the cosmic HI density and the HI column density distribution at z ∼ 0–5. At low z , FIREbox predicts a peak in the stellar-mass–halo-mass relation but also a higher abundance of massive galaxies and a higher cosmic star formation rate density than observed, showing that stellar feedback alone is insufficient to reproduce the properties of massive galaxies at late times. Given its high resolution and sample size, FIREbox offers a baseline prediction of galaxy formation theory in a ΛCDM Universe while also highlighting modelling challenges to be addressed in next-generation galaxy simulations. 
    more » « less
    Free, publicly-accessible full text available May 2, 2024