skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whiteford, Niall"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an atmospheric retrieval analysis on a set of young, cloudy, red L dwarfs—CWISER J124332.12+600126.2 (BD+60 1417B) and WISEP J004701.06+680352.1 (W0047)—using the Brewster retrieval framework. We also present the first elemental abundance measurements of the young K-dwarf (K0) host star, BD+60 1417, using high-resolution (R= 50,000) spectra taken with the Potsdam Echelle Polarimetric and Spectroscopic Instrument on the Large Binocular Telescope. In the complex cloudy L-dwarf regime the emergence of condensate cloud species complicates retrieval analysis when only near-infrared data are available. We find that for both L dwarfs in this work, despite testing three different thermal profile parameterizations we are unable to constrain reliable abundance measurements and thus the carbon-to-oxygen ratio. While we cannot conclude what the abundances are, we can conclude that the data strongly favor a cloud model over a cloudless model. We note that the difficulty in retrieval constraints persists regardless of the signal-to-noise ratio of the data examined (S/N ∼ 10 for CWISER BD+60 1417B and 40 for WISEP W0047). The results presented in this work provide valuable lessons about retrieving young, low-surface-gravity cloudy L dwarfs. This work provides continued evidence of missing information in models and the crucial need for JWST to guide and inform retrieval analysis in this regime. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. Abstract Beyond our Solar System, aurorae have been inferred from radio observations of isolated brown dwarfs1,2. Within our Solar System, giant planets have auroral emission with signatures across the electromagnetic spectrum including infrared emission of H3+and methane. Isolated brown dwarfs with auroral signatures in the radio have been searched for corresponding infrared features, but only null detections have been reported3. CWISEP J193518.59-154620.3. (W1935 for short) is an isolated brown dwarf with a temperature of approximately 482 K. Here we report James Webb Space Telescope observations of strong methane emission from W1935 at 3.326 μm. Atmospheric modelling leads us to conclude that a temperature inversion of approximately 300 K centred at 1–10 mbar replicates the feature. This represents an atmospheric temperature inversion for a Jupiter-like atmosphere without irradiation from a host star. A plausible explanation for the strong inversion is heating by auroral processes, although other internal and external dynamical processes cannot be ruled out. The best-fitting model rules out the contribution of H3+emission, which is prominent in Solar System gas giants. However, this is consistent with rapid destruction of H3+at the higher pressure where the W1935 emission originates4
    more » « less
  3. ABSTRACT Retrieval methods are a powerful analysis technique for modelling exoplanetary atmospheres by estimating the bulk physical and chemical properties that combine in a forward model to best fit an observed spectrum, and they are increasingly being applied to observations of directly imaged exoplanets. We have adapted taurex3, the Bayesian retrieval suite, for the analysis of near-infrared spectrophotometry from directly imaged gas giant exoplanets and brown dwarfs. We demonstrate taurex3’s applicability to sub-stellar atmospheres by presenting results for brown dwarf benchmark GJ 570D which are consistent with previous retrieval studies, whilst also exhibiting systematic biases associated with the presence of alkali lines. We also present results for the cool exoplanet 51 Eri b, the first application of a free chemistry retrieval analysis to this object, using spectroscopic observations from GPI and SPHERE. While our retrieval analysis is able to explain spectroscopic and photometric observations without employing cloud extinction, we conclude this may be a result of employing a flexible temperature-pressure profile which is able to mimic the presence of clouds. We present Bayesian evidence for an ammonia detection with a 2.7σ confidence, the first indication of ammonia in a directly imaged exoplanetary atmosphere. This is consistent with this molecule being present in brown dwarfs of a similar spectral type. We demonstrate the chemical similarities between 51 Eri b and GJ 570D in relation to their retrieved molecular abundances. Finally, we show that overall retrieval conclusions for 51 Eri b can vary when employing different spectral data and modelling components, such as temperature–pressure and cloud structures. 
    more » « less
  4. Abstract We present results from an atmospheric retrieval analysis of Gl 229B using the Brewster retrieval code. We find the best fit model to be cloud-free, consistent with the T dwarf retrieval work of Line et al.; Zalesky et al. and Gonzales et al. Fundamental parameters (mass, radius, log(LBol/LSun), log(g)) determined from our model agree within 1σto SED-derived values, except forTeffwhere our retrievedTeffis approximately 100 K cooler than the evolutionary model-based SED value. We find a retrieved mass of 50 9 + 12 MJup, however, we also find that the observables of Gl 229B can be explained by a cloud-free model with a prior on mass at the dynamical value, 70MJup. We are able to constrain abundances for H2O, CO, CH4, NH3, Na and K and find a supersolar C/O ratio as compared to its primary, Gl 229A. We report an overall subsolar metallicity due to atmospheric oxygen depletion, but find a solar [C/H], which matches that of the primary. We find that this work contributes to a growing trend in retrieval-based studies, particularly for brown dwarfs, toward supersolar C/O ratios and discuss the implications of this result on formation mechanisms and internal physical processes, as well as model biases. 
    more » « less
  5. Abstract We present an atmospheric retrieval analysis of a pair of highly variable, ∼200 Myr old, early T type planetary-mass exoplanet analogs SIMP J01365662+0933473 and 2MASS J21392676+0220226 using the Brewster retrieval framework. Our analysis, which makes use of archival 1–15μm spectra, finds almost identical atmospheres for both objects. For both targets, we find that the data is best described by a patchy, high-altitude forsterite (Mg2SiO4) cloud above a deeper, optically thick iron (Fe) cloud. Our model constrains the cloud properties well, including the cloud locations and cloud particle sizes. We find that the patchy forsterite slab cloud inferred from our retrieval may be responsible for the spectral behavior of the observed variability. Our retrieved cloud structure is consistent with the atmospheric structure previously inferred from spectroscopic variability measurements, but clarifies this picture significantly. We find consistent C/O ratios for both objects, which supports their formation within the same molecular cloud in the Carina-Near moving group. Finally, we note some differences in the constrained abundances of H2O and CO, which may be caused by data quality and/or astrophysical processes such as auroral activity and their differing rotation rates. The results presented in this work provide a promising preview of the detail with which we will characterize extrasolar atmospheres with JWST, which will yield higher-quality spectra across a wider wavelength range. 
    more » « less
  6. Abstract The unprecedented medium-resolution (Rλ∼ 1500–3500) near- and mid-infrared (1–18μm) spectrum provided by JWST for the young (140 ± 20 Myr) low-mass (12–20MJup) L–T transition (L7) companion VHS 1256 b gives access to a catalog of molecular absorptions. In this study, we present a comprehensive analysis of this data set utilizing a forward-modeling approach applying our Bayesian framework,ForMoSA. We explore five distinct atmospheric models to assess their performance in estimating key atmospheric parameters:Teff, log(g), [M/H], C/O,γ,fsed, andR. Our findings reveal that each parameter’s estimate is significantly influenced by factors such as the wavelength range considered and the model chosen for the fit. This is attributed to systematic errors in the models and their challenges in accurately replicating the complex atmospheric structure of VHS 1256 b, notably the complexity of its clouds and dust distribution. To propagate the impact of these systematic uncertainties on our atmospheric property estimates, we introduce innovative fitting methodologies based on independent fits performed on different spectral windows. We finally derived aTeffconsistent with the spectral type of the target, considering its young age, which is confirmed by our estimate of log(g). Despite the exceptional data quality, attaining robust estimates for chemical abundances [M/H] and C/O, often employed as indicators of formation history, remains challenging. Nevertheless, the pioneering case of JWST’s data for VHS 1256 b has paved the way for future acquisitions of substellar spectra that will be systematically analyzed to directly compare the properties of these objects and correct the systematics in the models. 
    more » « less
  7. Abstract We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same data set to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration NIRISS F380M AMI can reach contrast levels of ∼9–10 mag at ≳λ/D. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower-mass exoplanets than lower-contrast ground-based AMI setups, at orbital separations inaccessible to JWST coronagraphy. 
    more » « less
  8. Abstract We present JWST Early Release Science coronagraphic observations of the super-Jupiter exoplanet, HIP 65426b, with the Near-Infrared Camera (NIRCam) from 2 to 5μm, and with the Mid-Infrared Instrument (MIRI) from 11 to 16μm. At a separation of ∼0.″82 (87 31 + 108 au), HIP 65426b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first-ever direct detection of an exoplanet beyond 5μm. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, depending on separation and subtraction method, with measured 5σcontrast limits of ∼1 × 10−5and ∼2 × 10−4at 1″ for NIRCam at 4.4μm and MIRI at 11.3μm, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3MJupbeyond separations of ∼100 au. Together with existing ground-based near-infrared data, the JWST photometry are fit well by aBT-SETTLatmospheric model from 1 to 16μm, and they span ∼97% of HIP 65426b's luminous range. Independent of the choice of model atmosphere, we measure an empirical bolometric luminosity that is tightly constrained between log L bol / L = −4.31 and −4.14, which in turn provides a robust mass constraint of 7.1 ± 1.2MJup. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterize the population of exoplanets amenable to high-contrast imaging in greater detail. 
    more » « less
  9. Abstract We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b isa<20MJupwidely separated (∼8″,a= 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color–magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256 b with JWST's NIRSpec IFU and MIRI MRS modes for coverage from 1 to 20μm at resolutions of ∼1000–3700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the JWST spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion. 
    more » « less