Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Online professional development (PD) can reach teachers from widespread areas. Here, we describe PD activities that are part of a project focused on integrated science, technology, engineering, and mathematics (iSTEM) teaching self-efficacy and effectiveness among earlycareer elementary teachers. Toward our objective of building a community of elementary teachers focused on improving their iSTEM teaching, we are conducting online PD institutes over four summers. These PD institutes are designed using Desimone’s five critical features of effective PD: content focus, active learning, coherence, duration, and collective participation. Our institutes engage teachers in an initial synchronous online session, which is followed by independent work time to put their learning into practice. It concludes with a final synchronous online session where teachers share their asynchronous work, receive feedback, and identify the next steps in enacting their learning in the classroom. Below we describe the first year’s PD activities.more » « less
-
Elementary teachers often have low self-efficacy for teaching science and engineering, and a range of professional development experiences have been designed to support teaching self-efficacy. Out of 117 total studies from 2010-2021 included in our systematic review, 22 focused specifically on inservice elementary teachers’ science and engineering teaching self-efficacy. In this presentation, we synthesize this existing research to identify trends in the literature. Our findings reveal that while existing research suggests that professional development opportunities can support elementary teachers’ science and engineering teaching self-efficacy, significant gaps in the literature remain. It is unclear why some professional development experiences support improved self-efficacy while others do not, and it is difficult to disentangle the effects of the many factors that may relate to self-efficacy within these studies. Recommendations for future research are described.more » « less
-
Preservice teacher preparation programs and inservice professional development enhance science teaching self-efficacy. Research has shown that elementary teachers often have low self-efficacy for teaching science and engineering. However, there is less evidence surrounding engineering teaching self-efficacy. In this systematic review of literature, we explored the research question: What does the existing literature on self-efficacy reveal about fostering elementary teachers’ engineering teaching self-efficacy? We (1) synthesize the existing research on engineering teaching self-efficacy and (2) describe trends in research and uncover gaps that exist, including recommendations for future research. Among the 117 articles included in our full systematic review of science and engineering teaching self-efficacy, only 13 empirical studies focused specifically on engineering teaching self-efficacy. With a dearth of studies in both preservice and inservice contexts, there is a need for additional research on engineering teaching self-efficacy. In particular, longitudinal studies that track change over time and measure lasting effects of interventions. Further, detailed explorations of the factors that impact engineering teaching self-efficacy across multiple contexts are needed. Findings from these studies will help STEM educators to inform the design of preservice teacher education programs as well as inservice professional development opportunities.more » « less
-
The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms. This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education. The most prominent perspectives describe technology as the following: (a) vocational education, industrial arts, or the product of engineering, (b) educational or instructional technology, (c) computing or computational thinking, and (d) the tools and practices used by practitioners of science, mathematics, and engineering. We have identified the fourth perspective as the most salient with respect to K-12 science and STEM education. This particular perspective is in many ways compatible with the other three perspectives, but this depends heavily on the beliefs, prior experiences, and instructional goals of teachers who use technology in their science or STEM classroom.more » « less
-
null (Ed.)Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument - the STEM Observation Protocol (STEM-OP) - that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the STEM-OP began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 79 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the STEM-OP consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. The STEM-OP will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms.more » « less
An official website of the United States government

Full Text Available