skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wong, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The enormous growth of AI computing has led to a surging demand for electricity. To stem the resulting energy cost and environmental impact, this paper explores opportunities enabled by the increasing hardware heterogeneity and introduces the concept of Geographical Server Relocation (GSR). Specifically, GSR physically balances the available AI servers across geographically distributed data centers subject to AI computing demand and power capacity constraints in each location. The key idea of GSR is to relocate older and less energy-efficient servers to regions with more renewables, better water efficiencies and/or lower electricity prices. Our case study demonstrates that, even with modest flexibility of relocation, GSR can substantially reduce the total operational environmental footprints and operation costs of AI computing. We conclude this paper by discussing major challenges of GSR, including service migration, software management, and algorithms. 
    more » « less
    Free, publicly-accessible full text available July 9, 2025
  2. Free, publicly-accessible full text available May 5, 2025
  3. Pellizzoni, Rodolfo (Ed.)
    Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Free, publicly-accessible full text available October 28, 2024
  5. Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers, such as data centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on the power grid’s need. As renewable energy adoption grows, the average reward price of frequency regulation services has become much higher than that of the electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation service. Many existing techniques modulating data center power result in significant performance slowdown or provide a low amount of frequency regulation provision. We present PowerMorph , a tight QoS-aware data center power-reshaping framework, which enables commodity servers to provide practical frequency regulation service. The key behind PowerMorph  is using “complementary workload” as an additional knob to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in certain cases can even completely eliminate the data center electricity bill and provide a net profit. 
    more » « less
  6. Multi-accelerator servers are increasingly being deployed in shared multi-tenant environments (such as in cloud data centers) in order to meet the demands of large-scale compute-intensive workloads. In addition, these accelerators are increasingly being inter-connected in complex topologies and workloads are exhibiting a wider variety of inter-accelerator communication patterns. However, existing allocation policies are ill-suited for these emerging use-cases. Specifically, this work identifies that multi-accelerator workloads are commonly fragmented leading to reduced bandwidth and increased latency for inter-accelerator communication. We propose Multi-Accelerator Pattern Allocation (MAPA), a graph pattern mining approach towards providing generalized allocation support for allocating multi-accelerator workloads on multi-accelerator servers. We demonstrate that MAPA is able to improve the execution time of multi-accelerator workloads and that MAPA is able to provide generalized benefits across various accelerator topologies. Finally, we demonstrate a speedup of 12.4% for 75th percentile of jobs with the worst case execution time reduced by up to 35% against baseline policy using MAPA. 
    more » « less