Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Error correction coding schemes with local-global decoding are motivated by practical data storage applications where a balance must be achieved between low latency read access and high data reliability. As an example, consider a 4KB codeword, consisting of four 1KB subblocks, that supports a local-global decoding architecture. Local decoding can provide reliable, low-latency access to individual 1KB subblocks under good channel conditions, while global decoding can provide a “safety-net” for recovery of the entire 4KB block when local decoding fails under bad channel conditions. Recently, Ram and Cassuto have proposed such local-global decoding architectures for LDPC codes and spatially coupled LDPC codes. In this paper, we investigate a coupled polar code architecture that supports both local and global decoding. The coupling scheme incorporates a systematic outer polar code and a partitioned mapping of the outer codeword to semipolarized bit-channels of the inner polar codes. Error rate simulation results are presented for 2 and 4 subblocks.more » « less
-
Summary In this paper, we develop a systematic theory for high-dimensional analysis of variance in multivariate linear regression, where the dimension and the number of coefficients can both grow with the sample size. We propose a new U-type statistic to test linear hypotheses and establish a high-dimensional Gaussian approximation result under fairly mild moment assumptions. Our general framework and theory can be used to deal with the classical one-way multivariate analysis of variance, and the nonparametric one-way multivariate analysis of variance in high dimensions. To implement the test procedure, we introduce a sample-splitting-based estimator of the second moment of the error covariance and discuss its properties. A simulation study shows that our proposed test outperforms some existing tests in various settings.more » « less
-
Abstract Self-testing allows one to characterise quantum systems under minimal assumptions. However, existing schemes rely on quantum nonlocality and cannot be applied to systems that are not entangled. Here, we introduce a robust method that achieves self-testing of individual systems by taking advantage of contextuality. The scheme is based on the simplest contextuality witness for the simplest contextual quantum system—the Klyachko-Can-Binicioğlu-Shumovsky inequality for the qutrit. We establish a lower bound on the fidelity of the state and the measurements as a function of the value of the witness under a pragmatic assumption on the measurements. We apply the method in an experiment on a single trapped40Ca+using randomly chosen measurements and perfect detection efficiency. Using the observed statistics, we obtain an experimental demonstration of self-testing of a single quantum system.
Free, publicly-accessible full text available October 19, 2024