Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Finding node correspondence across networks, namely multi-network alignment, is an essential prerequisite for joint learning on multiple networks. Despite great success in aligning networks in pairs, the literature on multi-network alignment is sparse due to the exponentially growing solution space and lack of high-order discrepancy measures. To fill this gap, we propose a hierarchical multi-marginal optimal transport framework named HOT for multi-network alignment. To handle the large solution space, multiple networks are decomposed into smaller aligned clusters via the fused Gromov-Wasserstein (FGW) barycenter. To depict high-order relationships across multiple networks, the FGW distance is generalized to the multi-marginal setting, based on which networks can be aligned jointly. A fast proximal point method is further developed with guaranteed convergence to a local optimum. Extensive experiments and analysis show that our proposed HOT achieves significant improvements over the state-of-the-art in both effectiveness and scalability.more » « less
-
Network alignment is a critical steppingstone behind a variety of multi-network mining tasks. Most of the existing methods essentially optimize a Frobenius-like distance or ranking-based loss, ignoring the underlying geometry of graph data. Optimal transport (OT), together with Wasserstein distance, has emerged to be a powerful approach accounting for the underlying geometry explicitly. Promising as it might be, the state-of-the-art OT-based alignment methods suffer from two fundamental limitations, including (1) effectiveness due to the insufficient use of topology and consistency information and (2) scalability due to the non-convex formulation and repeated computationally costly loss calculation. In this paper, we propose a position-aware regularized optimal transport framework for network alignment named PARROT. To tackle the effectiveness issue, the proposed PARROT captures topology information by random walk with restart, with three carefully designed consistency regularization terms. To tackle the scalability issue, the regularized OT problem is decomposed into a series of convex subproblems and can be efficiently solved by the proposed constrained proximal point method with guaranteed convergence. Extensive experiments show that our algorithm achieves significant improvements in both effectiveness and scalability, outperforming the state-of-the-art network alignment methods and speeding up existing OT-based methods by up to 100 times.more » « less
-
In a connected world, fair graph learning is becoming increasingly important because of the growing concerns about bias. Yet, the vast majority of existing works assume that the input graph comes from a single view while ignoring the multi-view essence of graphs. Generally speaking, the bias in graph mining is often rooted in the input graph and is further introduced or even amplified by the graph mining model. It thus poses critical research questions regarding the intrinsic relationships of fairness on different views and the possibility of mitigating bias on multiple views simultaneously. To answer these questions, in this paper, we explore individual fairness in multi-view graph mining. We first demonstrate the necessity of fair multi-view graph learning. Building upon the optimization perspective of fair single-view graph mining, we then formulate our problem as a linear weighted optimization problem. In order to figure out the weight of each view, we resort to the minimax Pareto fairness, which is closely related to the Rawlsian difference principle, and propose an effective solver named iFiG that minimizes the utility loss while promoting individual fairness for each view with two different instantiations. The extensive experiments that we conduct in the application of multi-view spectral clustering and INFORM post-processing demonstrate the efficacy of our proposed method in individual bias mitigation.more » « less
-
Recent years have witnessed the superior performance of heterogeneous graph neural networks (HGNNs) in dealing with heterogeneous information networks (HINs). Nonetheless, the success of HGNNs often depends on the availability of sufficient labeled training data, which can be very expensive to obtain in real scenarios. Active learning provides an effective solution to tackle the data scarcity challenge. For the vast majority of the existing work regarding active learning on graphs, they mainly focus on homogeneous graphs, and thus fall in short or even become inapplicable on HINs. In this paper, we study the active learning problem with HGNNs and propose a novel meta-reinforced active learning framework MetRA. Previous reinforced active learning algorithms train the policy network on labeled source graphs and directly transfer the policy to the target graph without any adaptation. To better exploit the information from the target graph in the adaptation phase, we propose a novel policy transfer algorithm based on meta-Q-learning termed per-step MQL. Empirical evaluations on HINs demonstrate the effectiveness of our proposed framework. The improvement over the best baseline is up to 7% in Micro-F1.more » « less
-
Knowledge graph reasoning plays a pivotal role in many real-world applications, such as network alignment, computational fact-checking, recommendation, and many more. Among these applications, knowledge graph completion (KGC) and multi-hop question answering over knowledge graph (Multi-hop KGQA) are two representative reasoning tasks. In the vast majority of the existing works, the two tasks are considered separately with different models or algorithms. However, we envision that KGC and Multi-hop KGQA are closely related to each other. Therefore, the two tasks will benefit from each other if they are approached adequately. In this work, we propose a neural model named BiNet to jointly handle KGC and multi-hop KGQA, and formulate it as a multi-task learning problem. Specifically, our proposed model leverages a shared embedding space and an answer scoring module, which allows the two tasks to automatically share latent features and learn the interactions between natural language question decoder and answer scoring module. Compared to the existing methods, the proposed BiNet model addresses both multi-hop KGQA and KGC tasks simultaneously with superior performance. Experiment results show that BiNet outperforms state-of-the-art methods on a wide range of KGQA and KGC benchmark datasets.more » « less
-
Graph Convolutional Network (GCN) plays pivotal roles in many real-world applications. Despite the successes of GCN deployment, GCN often exhibits performance disparity with respect to node de- grees, resulting in worse predictive accuracy for low-degree nodes. We formulate the problem of mitigating the degree-related per- formance disparity in GCN from the perspective of the Rawlsian difference principle, which is originated from the theory of distribu- tive justice. Mathematically, we aim to balance the utility between low-degree nodes and high-degree nodes while minimizing the task- specific loss. Specifically, we reveal the root cause of this degree- related unfairness by analyzing the gradients of weight matrices in GCN. Guided by the gradients of weight matrices, we further propose a pre-processing method RawlsGCN-Graph and an in- processing method RawlsGCN-Grad that achieves fair predictive accuracy in low-degree nodes without modification on the GCN architecture or introduction of additional parameters. Extensive experiments on real-world graphs demonstrate the effectiveness of our proposed RawlsGCN methods in significantly reducing degree- related bias while retaining comparable overall performance.more » « less