skip to main content


Search for: All records

Creators/Authors contains: "Xiong, Yuzan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The opto-electronic oscillators (OEOs) hosting self-sustained oscillations by a time-delayed mechanism are of particular interest in long-haul signal transmission and processing. On the other hand, owing to their unique tunability and compatibility, magnons—as elementary excitations of spin waves—are advantageous carriers for coherent signal transduction across different platforms. In this work, we integrated an opto-electronic oscillator with a magnonic oscillator consisting of a microwave waveguide and a yttrium iron garnet sphere. We find that, in the presence of the magnetic sphere, the oscillator power spectrum exhibits sidebands flanking the fundamental OEO modes. The measured waveguide transmission reveals anti-crossing gaps, a hallmark of the coupling between the opto-electronic oscillator modes and the Walker modes of the sphere. Experimental results are well reproduced by a coupled-mode theory that accounts for nonlinear magnetostrictive interactions mediated by the magnetic sphere. Leveraging the advanced fiber-optic technologies in opto-electronics, this work lays out a new, hybrid platform for investigating long-distance coupling and nonlinearity in coherent magnonic phenomena.

     
    more » « less
  2. Free, publicly-accessible full text available August 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. Abstract

    This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    Next-generation terahertz (THz) sources demand lightweight, low-cost, defect-tolerant, and robust components with synergistic, tunable capabilities. However, a paucity of materials systems simultaneously possessing these desirable attributes and functionalities has made device realization difficult. Here we report the observation of asymmetric spintronic-THz radiation in Two-Dimensional Hybrid Metal Halides (2D-HMH) interfaced with a ferromagnetic metal, produced by ultrafast spin current under femtosecond laser excitation. The generated THz radiation exhibits an asymmetric intensity toward forward and backward emission direction whose directionality can be mutually controlled by the direction of applied magnetic field and linear polarization of the laser pulse. Our work demonstrates the capability for the coherent control of THz emission from 2D-HMHs, enabling their promising applications on the ultrafast timescale as solution-processed material candidates for future THz emitters.

     
    more » « less
  7. null (Ed.)