skip to main content

Search for: All records

Creators/Authors contains: "Xu, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We deploy a fully coupled thermo-fluidic finite element approach to simulating natural ventilation in a sustainably designed building with complex geometry. The 'interlock house' uses building design for climate control instead of mechanical means (such as air conditioning). Therefore, accurately modeling the natural ventilation flows is crucial to assess thermal comfort in such designs. A residual-based variational multiscale method (VMS) is employed, which is a Large Eddy Simulation (LES) type approach to turbulence modeling. Air diffusion performance index (ADPI) and predicted mean vote (PMV) are computed to investigate thermal comfort in both configurations. This work illustrates the ability of the framework to comprehensively model and predict natural ventilation under various operating scenarios.