Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 31, 2025
-
The literature on strategic communication originated with the influential cheap talk model, which precedes the Bayesian persuasion model by three decades. This model describes an interaction between two agents: sender and receiver. The sender knows some state of the world which the receiver does not know, and tries to influence the receiver’s action by communicating a cheap talk message to the receiver. This paper initiates the algorithmic study of cheap talk in a finite environment (i.e., a finite number of states and receiver’s possible actions). We first prove that approximating the sender-optimal or the welfare-maximizing cheap talk equilibrium up to a certain additive constant or multiplicative factor is NP-hard. Fortunately, we identify three naturally-restricted cases that admit efficient algorithms for finding a sender-optimal equilibrium. These include a state-independent sender’s utility structure, a constant number of states or a receiver having only two actions.more » « lessFree, publicly-accessible full text available July 15, 2025
-
We study a variant of the principal-agent problem in which the principal does not directly observe the outcomes; rather, she gets a signal related to the agent’s action, according to a variable information structure. We provide simple necessary and sufficient conditions for implementability of an action and a utility profile by some information structure and the corresponding optimal contract — for a riskneutral or risk-averse agent, with or without the limited liability assumption. It turns out that the set of implementable utility profiles is characterized by simple thresholds on the utilities.more » « lessFree, publicly-accessible full text available July 15, 2025
-
How Can Platforms Learn to Make Persuasive Recommendations?
Many online platforms make recommendations to users on content from creators or products from sellers. The motivation underlying such recommendations is to persuade users into taking actions that also serve system-wide goals. To do this effectively, a platform needs to know the underlying distribution of payoff-relevant variables (such as content or product quality). However, this distributional information is often lacking—for example, when new content creators or sellers join a platform. In “Learning to Persuade on the Fly: Robustness Against Ignorance,” Zu, Iyer, and Xu study how a platform can make persuasive recommendations over time in the absence of distributional knowledge using a learning-based approach. They first propose and motivate a robust-persuasiveness criterion for settings with incomplete information. They then design an efficient recommendation algorithm that satisfies this criterion and achieves low regret compared with the benchmark of complete distributional knowledge. Overall, by relaxing the strong assumption of complete distributional knowledge, this research extends the applicability of information design to more practical settings.
Free, publicly-accessible full text available June 18, 2025 -
We consider multiple senders with informational advantage signaling to convince a single selfinterested actor to take certain actions. Generalizing the seminal Bayesian Persuasion framework, such settings are ubiquitous in computational economics, multi-agent learning, and machine learning with multiple objectives. The core solution concept here is the Nash equilibrium of senders’ signaling policies. Theoretically, we prove that finding an equilibrium in general is PPAD-Hard; in fact, even computing a sender’s best response is NP-Hard. Given these intrinsic difficulties, we turn to finding local Nash equilibria. We propose a novel differentiable neural network to approximate this game’s non-linear and discontinuous utilities. Complementing this with the extra-gradient algorithm, we discover local equilibria that Pareto dominates full-revelation equilibria and those found by existing neural networks. Broadly, our theoretical and empirical contributions are of interest to a large class of economic problems.more » « lessFree, publicly-accessible full text available July 24, 2025
-
To enhance the efficiency and practicality of federated bandit learning, recent advances have introduced incentives to motivate communication among clients, where a client participates only when the incentive offered by the server outweighs its participation cost. However, existing incentive mechanisms naively assume the clients are truthful: they all report their true cost and thus the higher cost one participating client claims, the more the server has to pay. Therefore, such mechanisms are vulnerable to strategic clients aiming to optimize their own utility by misreporting. To address this issue, we propose an incentive compatible (i.e., truthful) communication protocol, named Truth-FedBan, where the incentive for each participant is independent of its self-reported cost, and reporting the true cost is the only way to achieve the best utility. More importantly, Truth-FedBan still guarantees the sub-linear regret and communication cost without any overhead. In other words, the core conceptual contribution of this paper is, for the first time, demonstrating the possibility of simultaneously achieving incentive compatibility and nearly optimal regret in federated bandit learning. Extensive numerical studies further validate the effectiveness of our proposed solution.more » « lessFree, publicly-accessible full text available May 10, 2025
-
We study a ubiquitous learning challenge in online principal-agent problems during which the principal learns the agent's private information from the agent's revealed preferences in historical interactions. This paradigm includes important special cases such as pricing and contract design, which have been widely studied in recent literature. However, existing work considers the case where the principal can only choose a single strategy at every round to interact with the agent and then observe the agent's revealed preference through their actions. In this paper, we extend this line of study to allow the principal to offer a menu of strategies to the agent and learn additionally from observing the agent's selection from the menu. We provide a thorough investigation of several online principal-agent problem settings and characterize their sample complexities, accompanied by the corresponding algorithms we have developed. We instantiate this paradigm to several important design problems — including Stackelberg (security) games, contract design, and information design. Finally, we also explore the connection between our findings and existing results about online learning in Stackelberg games, and we offer a solution that can overcome a key hard instance of previous work.
Free, publicly-accessible full text available March 25, 2025 -
We consider a dynamic Bayesian persuasion setting where a single long-lived sender persuades a stream of ``short-lived'' agents (receivers) by sharing information about a payoff-relevant state. The state transitions are Markovian and the sender seeks to maximize the long-run average reward by committing to a (possibly history-dependent) signaling mechanism. While most previous studies of Markov persuasion consider exogenous agent beliefs that are independent of the chain, we study a more natural variant with endogenous agent beliefs that depend on the chain's realized history. A key challenge to analyze such settings is to model the agents' partial knowledge about the history information. We analyze a Markov persuasion process (MPP) under various information models that differ in the amount of information the receivers have about the history of the process. Specifically, we formulate a general partial-information model where each receiver observes the history with an l period lag. Our technical contribution start with analyzing two benchmark models, i.e., the full-history information model and the no-history information model. We establish an ordering of the sender's payoff as a function of the informativeness of agent's information model (with no-history as the least informative), and develop efficient algorithms to compute optimal solutions for these two benchmarks. For general l, we present the technical challenges in finding an optimal signaling mechanism, where even determining the right dependency on the history becomes difficult. To bypass the difficulties, we use a robustness framework to design a "simple" \emph{history-independent} signaling mechanism that approximately achieves optimal payoff when l is reasonably large.more » « lessFree, publicly-accessible full text available December 24, 2024
-
Bringmann, Karl ; Grohe, Martin ; Puppis, Gabriele ; Svensson, Ola (Ed.)We study information design in click-through auctions, in which the bidders/advertisers bid for winning an opportunity to show their ads but only pay for realized clicks. The payment may or may not happen, and its probability is called the click-through rate (CTR). This auction format is widely used in the industry of online advertising. Bidders have private values, whereas the seller has private information about each bidder’s CTRs. We are interested in the seller’s problem of partially revealing CTR information to maximize revenue. Information design in click-through auctions turns out to be intriguingly different from almost all previous studies in this space since any revealed information about CTRs will never affect bidders' bidding behaviors - they will always bid their true value per click - but only affect the auction’s allocation and payment rule. In some sense, this makes information design effectively a constrained mechanism design problem. Our first result is an FPTAS to compute an approximately optimal mechanism under a constant number of bidders. The design of this algorithm leverages Bayesian bidder values which help to "smooth" the seller’s revenue function and lead to better tractability. The design of this FPTAS is complex and primarily algorithmic. Our second main result pursues the design of "simple" mechanisms that are approximately optimal yet more practical. We primarily focus on the two-bidder situation, which is already notoriously challenging as demonstrated in recent works. When bidders' CTR distribution is symmetric, we develop a simple prior-free signaling scheme, whose construction relies on a parameter termed optimal signal ratio. The constructed scheme provably obtains a good approximation as long as the maximum and minimum of bidders' value density functions do not differ much.more » « lessFree, publicly-accessible full text available January 1, 2025