skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Jian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Alkan, Can (Ed.)
    Abstract SummaryWith the rapid development of long-read sequencing technologies, the era of individual complete genomes is approaching. We have developed wgatools, a cross-platform, ultrafast toolkit that supports a range of whole-genome alignment formats, offering practical tools for conversion, processing, evaluation, and visualization of alignments, thereby facilitating population-level genome analysis and advancing functional and evolutionary genomics. Availability and implementationwgatools supports diverse formats and can process, filter, and statistically evaluate alignments, perform alignment-based variant calling, and visualize alignments both locally and genome-wide. Built with Rust for efficiency and safe memory usage, it ensures fast performance and can handle large datasets consisting of hundreds of genomes. wgatools is published as free software under the MIT open-source license, and its source code is freely available at https://github.com/wjwei-handsome/wgatools and https://zenodo.org/records/14882797. 
    more » « less
    Free, publicly-accessible full text available March 29, 2026
  3. Free, publicly-accessible full text available June 4, 2026
  4. Mounting concerns regarding per‐/poly‐fluoroalkyl substances (PFAS) on human health are focusing attention on trace‐level PFAS detection in aqueous environments. Here, we report a readily prepared small molecule, 2,6‐bis(3,5‐diethyl‐1H‐pyrrol‐2‐yl)pyridine (receptor 1), that displays high binding affinities (logKa< = 4.9–6.2) and produces a strong “turn‐on” emission response when exposed to representative PFAS in hexanes. The hydrophobic nature of 1 , and its strong affinity for various PFAS, allowed hexanes solutions of 1 to be used as “turn‐on” emission sensors for dilute aqueous solutions of long‐chain (≥C8) PFAS under acidic conditions (pH 2) by liquid‐phase extraction (LPE). In the case of perfluorooctanoic acid (PFOA), the response was rapid (under 10 min) and sensitive. Limits of detection (LOD) as low as 250 ppt were readily achievable by direct naked‐eye observation. LOD as low as 40 and 100 ppt, respectively, could be reached for deionized and tap water solutions of PFOA using a smartphone color‐scanning application. Little change in the sensitivity was seen in the presence of a range of inorganic and organic species that could act as potential interferants. Support for the present findings came from UV–vis absorbance, fluorescence, 1 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation–induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light. Pulsed light stimulation of human cardiomyocytes showed that the optoelectronically active scaffold could increase their beating rates (>40%), maintain high cell viability under light stimulation (>96%), and negligibly affect the electrocardiogram morphology. The seeded scaffolds, termed optoelectronically active tissues, were able to successfully accelerate heart beating in vivo in rats. Our work demonstrates a viable wireless, printable, and optically controllable tissue, suggesting a transformative step in future therapy of electrically active tissues/organs. 
    more » « less
    Free, publicly-accessible full text available January 24, 2026
  6. Untethered electrical stimulation or pacing of the heart is of critical importance in addressing the pressing needs of cardiovascular diseases in both clinical therapies and fundamental studies. Among various stimulation methods, light illumination–induced electrical stimulation via photoelectric effect without any genetic modifications to beating cells/tissues or whole heart has profound benefits. However, a critical bottleneck lies in the lack of a suitable material with tissue-like mechanical softness and deformability and sufficient optoelectronic performances toward effective stimulation. Here, we introduce an ultrathin (<500 nm), stretchy, and self-adhesive rubbery bio-optoelectronic stimulator (RBOES) in a bilayer construct of a rubbery semiconducting nanofilm and a transparent, stretchable gold nanomesh conductor. The RBOES could maintain its optoelectronic performance when it was stretched by 20%. The RBOES was validated to effectively accelerate the beating of the human induced pluripotent stem cell–derived cardiomyocytes. Furthermore, acceleration of ex vivo perfused rat hearts by optoelectronic stimulation with the self-adhered RBOES was achieved with repetitive pulsed light illumination. 
    more » « less
  7. Abstract Multiple Arabidopsis H+/Cation exchangers (CAXs) participate in high‐capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1‐4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast‐localised H+/Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP‐MS) and synchrotron X‐ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP‐MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild‐type plants grown in Ca‐limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+/Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels. 
    more » « less
  8. Following a recent phylogenetic study, we here review the circumscription of the grammitid fern genus Oreogrammitis (Polypodiaceae: Grammitidoideae). We propose three new genera Calligrammitis, Devolia, and Glabrigrammitis, to accommodate the three clades resolved outside of the core Oreogrammitis. The taxonomic treatment is presented, and the morphology of each new genus is shown with a color plate. 
    more » « less