Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient two-step approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient samplingmore »
-
Characterization of paste flow is important in ensuring rheological control during printing. The interaction between the rheological characteristics and processing parameters are better studied through a combination of experimental and simulation tools. For fresh pastes and concrete, discrete element method (DEM)-based simulations are appropriate to provide insights into the particle scale processes occurring during extrusion-based printing, and to relate them to the macro-scale response of the entire system. In this paper, we model the extrusion process of a plain ordinary Portland cement (OPC) paste using DEM, and outline the methodology adopted to evaluate the linkage between particle scale processes and extrusion process. An analytical model for a frictional plastic material undergoing ram extrusion is also used in conjunction with the DEM model to arrive at the yield stresses and shaping stresses that enable efficient extrusion process, as a function of the material microstructure.