skip to main content


Search for: All records

Creators/Authors contains: "Yeoh, W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. There are many settings that extend the basic shortest-path search problem. In Bounded-Cost Search, we are given a constant bound, and the task is to find a solution within the bound. In Bi-Objective Search, each edge is associated with two costs (objectives), and the task is to minimize both objectives. In this paper, we combine both settings into a new setting of Bounded-Cost Bi-Objective Search. We are given two bounds, one for each objective, and the task is to find a solution within these bounds. We provide a scheme for normalizing the two objectives, introduce several algorithms for this new setting and compare them experimentally. 
    more » « less
  3. null (Ed.)
    In this paper, we build upon notions from knowledge representation and reasoning (KR) to expand a preliminary logic-based framework that characterizes the model reconciliation problem for explainable planning. We also provide a detailed exposition on the relationship between similar KR techniques, such as abductive explanations and belief change, and their applicability to explainable planning. 
    more » « less
  4. null (Ed.)
    In human-aware planning problems, the planning agent may need to explain its plan to a human user, especially when the plan appears infeasible or suboptimal for the user. A popular approach to do so is called model reconciliation, where the planning agent tries to reconcile the differences between its model and the model of the user such that its plan is also feasible and optimal to the user. This problem can be viewed as an optimization problem, where the goal is to find a subset-minimal explanation that one can use to modify the model of the user such that the plan of the agent is also feasible and optimal to the user. This paper presents an algorithm for solving such problems using answer set programming. 
    more » « less
  5. Many interesting search problems can be formulated as bi-objective search problems, that is, search problems where two kinds of costs have to be minimized, for example, travel distance and time for transportation problems. Bi-objective search algorithms have to maintain the set of undominated paths from the start state to each state to compute the set of paths from the start state to the goal state that are not dominated by some other path from the start state to the goal state (called the Pareto-optimal solution set). Each time they find a new path to a state s, they perform a dominance check to determine whether this path dominates any of the previously found paths to s or whether any of the previously found paths to s dominates this path. Existing algorithms do not perform these checks efficiently. On the other hand, our Bi-Objective A* (BOA*) algorithm requires only constant time per check. In our experimental evaluation, we show that BOA* can run an order of magnitude (or more) faster than state-of-the-art bi-objective search algorithms, such as NAMOA*, NAMOA*dr, Bi-Objective Dijkstra, and Bidirectional Bi-Objective Dijkstra. 
    more » « less
  6. Scheduling appliances is a challenging and interesting problem aimed at reducing energy consumption at a residential level. Previous work on appliance scheduling for smart homes assumes that user preferences have no uncertainty. In this paper, we study two approaches to address this problem when user preferences are uncertain. More specifically, we assume that user preferences in turning on or off a device are represented by Normal distributions. The first approach uses sample average approximation, a mathematical model, in computing a schedule. The second one relies on the fact that a scheduling problem could be viewed as a constraint satisfaction problem and uses depth-first search to identify a solution. We also conduct an experimental evaluation of the two approaches to investigate the scalability of each approach in different problem variants. We conclude by discussing computational challenges of our approaches and some possible directions for future work. 
    more » « less
  7. Multi-Agent Path Finding (MAPF) problems are traditionally solved in a centralized manner. There are works focusing on completeness, optimality, performance, or a tradeoff between them. However, there are only a few works based on spatial distribution. In this paper, we introduce ros-dmapf, a distributed MAPF solver. It consists of multiple MAPF sub-solvers, which---besides solving their assigned sub-problems---interact with each other to solve a given MAPF problem. In the current implementation, the sub-solvers are answer set planning systems for multiple agents, and are created based on spatial distribution of the problem. Interactions between components of ros-dmapf are facilitated by the Robot Operating System (ROS). The highlights of ros-dmapf are its scalability and a high degree of parallelism. We empirically evaluate ros-dmapf using the move-only domain of the asprilo system and results suggest that ros-dmapf scales up well. For instance, ros-dmapf gives a solution of length around 600 for a MAPF problem with 2000 robots in randomly generated 100×100 obstacle-free maps---a problem beyond the capability of a single sub-solver---within 7 minutes on a consumer laptop. We also evaluate ros-dmapf against some other MAPF solvers and results show that the system performs well. We also discuss possible improvements for future work. 
    more » « less