skip to main content


Search for: All records

Creators/Authors contains: "You, Haoran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vision Transformers (ViTs) have shown impressive performance and have become a unified backbone for multiple vision tasks. However, both the attention mechanism and multi-layer perceptrons (MLPs) in ViTs are not sufficiently efficient due to dense multiplications, leading to costly training and inference. To this end, we propose to reparameterize pre-trained ViTs with a mixture of multiplication primitives, e.g., bitwise shifts and additions, towards a new type of multiplication-reduced model, dubbed ShiftAddViT, which aims to achieve end-to-end inference speedups on GPUs without requiring training from scratch. Specifically, all MatMuls among queries, keys, and values are reparameterized using additive kernels, after mapping queries and keys to binary codes in Hamming space. The remaining MLPs or linear layers are then reparameterized with shift kernels. We utilize TVM to implement and optimize those customized kernels for practical hardware deployment on GPUs. We find that such a reparameterization on (quadratic or linear) attention maintains model accuracy, while inevitably leading to accuracy drops when being applied to MLPs. To marry the best of both worlds, we further propose a new mixture of experts (MoE) framework to reparameterize MLPs by taking multiplication or its primitives as experts, e.g., multiplication and shift, and designing a new latency-aware load-balancing loss. Such a loss helps to train a generic router for assigning a dynamic amount of input tokens to different experts according to their latency. In principle, the faster the experts run, the more input tokens they are assigned. Extensive experiments on various 2D/3D Transformer-based vision tasks consistently validate the effectiveness of our proposed ShiftAddViT, achieving up to 5.18x latency reductions on GPUs and 42.9% energy savings, while maintaining a comparable accuracy as original or efficient ViTs. Codes and models are available at https://github.com/GATECH-EIC/ShiftAddViT. 
    more » « less
    Free, publicly-accessible full text available September 21, 2024
  2. Free, publicly-accessible full text available June 17, 2024
  3. Vision Transformers (ViTs) have shown impressive per-formance but still require a high computation cost as compared to convolutional neural networks (CNNs), one rea-son is that ViTs' attention measures global similarities and thus has a quadratic complexity with the number of in-put tokens. Existing efficient ViTs adopt local attention or linear attention, which sacrifice ViTs' capabilities of capturing either global or local context. In this work, we ask an important research question: Can ViTs learn both global and local context while being more efficient during inference? To this end, we propose a framework called Castling- ViT, which trains ViTs using both linear-angular attention and masked softmax-based quadratic attention, but then switches to having only linear-angular attention during inference. Our Castling- ViT leverages angular ker-nels to measure the similarities between queries and keys via spectral angles. And we further simplify it with two techniques: (1) a novel linear-angular attention mechanism: we decompose the angular kernels into linear terms and high-order residuals, and only keep the linear terms; and (2) we adopt two parameterized modules to approximate high-order residuals: a depthwise convolution and an aux-iliary masked softmax attention to help learn global and lo-cal information, where the masks for softmax attention are regularized to gradually become zeros and thus incur no overhead during inference. Extensive experiments validate the effectiveness of our Castling- ViT, e.g., achieving up to a 1.8% higher accuracy or 40% MACs reduction on classification and 1.2 higher mAP on detection under comparable FLOPs, as compared to ViTs with vanilla softmax-based at-tentions. Project page is available at here. 
    more » « less
  4. Free, publicly-accessible full text available June 17, 2024
  5. Vision Transformers (ViTs) have achieved state-of-the-art performance on various vision tasks. However, ViTs’ self-attention module is still arguably a major bottleneck, limiting their achievable hardware efficiency and more extensive applications to resource constrained platforms. Meanwhile, existing accelerators dedicated to NLP Transformers are not optimal for ViTs. This is because there is a large difference between ViTs and Transformers for natural language processing (NLP) tasks: ViTs have a relatively fixed number of input tokens, whose attention maps can be pruned by up to 90% even with fixed sparse patterns, without severely hurting the model accuracy (e.g., <=1.5% under 90% pruning ratio); while NLP Transformers need to handle input sequences of varying numbers of tokens and rely on on-the-fly predictions of dynamic sparse attention patterns for each input to achieve a decent sparsity (e.g., >=50%). To this end, we propose a dedicated algorithm and accelerator co-design framework dubbed ViTCoD for accelerating ViTs. Specifically, on the algorithm level, ViTCoD prunes and polarizes the attention maps to have either denser or sparser fixed patterns for regularizing two levels of workloads without hurting the accuracy, largely reducing the attention computations while leaving room for alleviating the remaining dominant data movements; on top of that, we further integrate a lightweight and learnable auto-encoder module to enable trading the dominant high-cost data movements for lower-cost computations. On the hardware level, we develop a dedicated accelerator to simultaneously coordinate the aforementioned enforced denser and sparser workloads for boosted hardware utilization, while integrating on-chip encoder and decoder engines to leverage ViTCoD’s algorithm pipeline for much reduced data movements. Extensive experiments and ablation studies validate that ViTCoD largely reduces the dominant data movement costs, achieving speedups of up to 235.3×, 142.9×, 86.0×, 10.1×, and 6.8× over general computing platforms CPUs, EdgeGPUs, GPUs, and prior-art Transformer accelerators SpAtten and Sanger under an attention sparsity of 90%, respectively. Our code implementation is available at https://github.com/GATECH-EIC/ViTCoD. 
    more » « less
  6. Neural architecture search (NAS) has demonstrated amazing success in searching for efficient deep neural networks (DNNs) from a given supernet. In parallel, lottery ticket hypothesis has shown that DNNs contain small subnetworks that can be trained from scratch to achieve a comparable or even higher accuracy than the original DNNs. As such, it is currently a common practice to develop efficient DNNs via a pipeline of first search and then prune. Nevertheless, doing so often requires a tedious and costly process of search-train-prune-retrain and thus prohibitive computational cost. In this paper, we discover for the first time that both efficient DNNs and their lottery subnetworks (i.e., lottery tickets) can be directly identified from a supernet, which we term as SuperTickets, via a two-in-one training scheme with jointly architecture searching and parameter pruning. Moreover, we develop a progressive and unified SuperTickets identificationcesstab strategy that allows the connectivity of subnetworks to change during supernet training, achieving better accuracy and efficiency trade-offs than conventional sparse training. Finally, we evaluate whether such identified SuperTickets drawn from one task can transfer well to other tasks, validating their potential of simultaneously handling multiple tasks. Extensive experiments and ablation studies on three tasks and four benchmark datasets validate that our proposed SuperTickets achieve boosted accuracy and efficiency trade-offs than both typical NAS and pruning pipelines, regardless of having retraining or not. Codes and pretrained models are available at https://github.com/RICE-EIC/SuperTickets. 
    more » « less
  7. Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs. However, it remains notoriously challenging to train and inference GCNs over large graph datasets, limiting their application to large real-world graphs and hindering the exploration of deeper and more sophisticated GCN graphs. This is because as the graph size grows, the sheer number of node features and the large adjacency matrix can easily explode the required memory and data movements. To tackle the aforementioned challenges, we explore the possibility of drawing lottery tickets when sparsifying GCN graphs, i.e., subgraphs that largely shrink the adjacency matrix yet are capable of achieving accuracy comparable to or even better than their full graphs. Specifically, we for the first time discover the existence of graph early-bird (GEB) tickets that emerge at the very early stage when sparsifying GCN graphs, and propose a simple yet effective detector to automatically identify the emergence of such GEB tickets. Furthermore, we advocate graph-model co-optimization and develop a generic efficient GCN early-bird training framework dubbed GEBT that can significantly boost the efficiency of GCN training by (1) drawing joint early-bird tickets between the GCN graphs and models and (2) enabling simultaneously sparsification of both the GCN graphs and models. Experiments on various GCN models and datasets consistently validate our GEB finding and the effectiveness of our GEBT, e.g., our GEBT achieves up to 80.2% ~ 85.6% and 84.6% ~ 87.5% savings of GCN training and inference costs while offering a comparable or even better accuracy as compared to state-of-the-art methods. Our source code and supplementary appendix are available at https://github.com/RICE-EIC/Early-Bird-GCN. 
    more » « less
  8. Low precision deep neural network (DNN) training is one of the most effective techniques for boosting DNNs’ training efficiency, as it trims down the training cost from the finest bit level. While existing works mostly fix the model precision during the whole training process, a few pioneering works have shown that dynamic precision schedules help NNs converge to a better accuracy while leading to a lower training cost than their static precision training counterparts. However, existing dynamic low precision training methods rely on manually designed precision schedules to achieve advantageous efficiency and accuracy trade-offs, limiting their more comprehensive practical applications and achievable performance. To this end, we propose LDP, a Learnable Dynamic Precision DNN training framework that can automatically learn a temporally and spatially dynamic precision schedule during training towards optimal accuracy and efficiency trade-offs. It is worth noting that LDP-trained DNNs are by nature efficient during inference. Further more, we visualize the resulting temporal and spatial precision schedule and distribution of LDP trained DNNs on different tasks to better understand the corresponding DNNs’ characteristics at different training stages and DNN layers both during and after training, drawing insights for promoting further innovations. Extensive experiments and ablation studies (seven networks, five datasets, and three tasks) show that the proposed LDP consistently outperforms state-of-the-art (SOTA) low precision DNN training techniques in terms of training efficiency and achieved accuracy trade-offs. For example, in addition to having the advantage of being automated, our LDP achieves a 0.31% higher accuracy with a 39.1% lower computational cost when training ResNet-20 on CIFAR-10 as compared with the best SOTA method. 
    more » « less
  9. We present a first-of-its-kind ultra-compact intelligent camera system, dubbed i-FlatCam, including a lensless camera with a computational (Comp.) chip. It highlights (1) a predict-then-focus eye tracking pipeline for boosted efficiency without compromising the accuracy, (2) a unified compression scheme for single-chip processing and improved frame rate per second (FPS), and (3) dedicated intra-channel reuse design for depth-wise convolutional layers (DW-CONV) to increase utilization. i-FlatCam demonstrates the first eye tracking pipeline with a lensless camera and achieves 3.16 degrees of accuracy, 253 FPS, 91.49 µJ/Frame, and 6.7mm×8.9mm×1.2mm camera form factor, paving the way for next-generation Augmented Reality (AR) and Virtual Reality (VR) devices. 
    more » « less