skip to main content


Search for: All records

Creators/Authors contains: "Young, Chadwin D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gallium oxide (β-Ga 2 O 3 ) is becoming a popular material for high power electronic devices due to its wide bandgap and ease of processing. In this work, β-Ga 2 O 3 substrates received various annealing treatments before atomic layer deposition of HfO 2 and subsequent fabrication of metal–oxide–semiconductor (MOS) capacitors. Annealing of β-Ga 2 O 3 with forming gas or nitrogen produced degraded capacitance–voltage (C–V) behavior compared to a β-Ga 2 O 3 control sample with no annealing. A sample annealed with pure oxygen had improved C–V characteristics relative to the control sample, with a higher maximum capacitance and smaller flat-band voltage shift, indicating that oxygen annealing improved the C–V behavior. X-ray photoelectron spectroscopy also suggested a reduction in the oxygen vacancy concentration after O 2 annealing at 450 °C, which supports the improved C–V characteristics and indicates that O 2 annealing of β-Ga 2 O 3 may lead to better MOS device performance. 
    more » « less
  2. A Reset MOSFET is added to a perovskite MOSFET-based photodetector to serve as a current source to mitigate the influence of ionic movement on the performance of the photodetector. With the added MOSFET, the hysteresis is significantly reduced, and the dark current is controllable. The on/off ratio resumes to 10^6 and an ultrasensitive responsivity (over 80,000 A/W) is achieved under only 13 nW/cm^2 red (665 nm) light intensity. 
    more » « less
  3. Abstract

    Sc has been employed as an electron contact to a number of two-dimensional (2D) materials (e.g. MoS2, black phosphorous) and has enabled, at times, the lowest electron contact resistance. However, the extremely reactive nature of Sc leads to stringent processing requirements and metastable device performance with no true understanding of how to achieve consistent, high-performance Sc contacts. In this work, WSe2transistors with impressive subthreshold slope (109 mV dec−1) andION/IOFF(106) are demonstrated without post-metallization processing by depositing Sc contacts in ultra-high vacuum (UHV) at room temperature (RT). The lowest electron Schottky barrier height (SBH) is achieved by mildly oxidizing the WSe2in situbefore metallization, which minimizes subsequent reactions between Sc and WSe2. Post metallization anneals in reducing environments (UHV, forming gas) degrade theION/IOFFby ~103and increase the subthreshold slope by a factor of 10. X-ray photoelectron spectroscopy indicates the anneals increase the electron SBH by 0.4–0.5 eV and correspondingly convert 100% of the deposited Sc contacts to intermetallic or scandium oxide. Raman spectroscopy and scanning transmission electron microscopy highlight the highly exothermic reactions between Sc and WSe2, which consume at least one layer RT and at least three layers after the 400 °C anneals. The observed layer consumption necessitates multiple sacrificial WSe2layers during fabrication. Scanning tunneling microscopy/spectroscopy elucidate the enhanced local density of states below the WSe2Fermi level around individual Sc atoms in the WSe2lattice, which directly connects the scandium selenide intermetallic with the unexpectedly large electron SBH. The interface chemistry and structural properties are correlated with Sc–WSe2transistor and diode performance. The recommended combination of processing conditions and steps is provided to facilitate consistent Sc contacts to WSe2.

     
    more » « less