skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhang, Bingzhi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Bosonic variational quantum circuits (VQCs) are crucial for information processing in microwave cavities, trapped ions, and optical systems, widely applicable in quantum communication, sensing and error correction. The trainability of such VQCs is less understood, hindered by the lack of theoretical tools such ast-design due to the infinite dimension of the continuous-variable systems involved. We overcome this difficulty to reveal an energy-dependent barren plateau in such VQCs. The variance of the gradient decays as 1 / E M ν , exponential in the number of modesMbut polynomial in the (per-mode) circuit energyE. The exponentν = 1 for shallow circuits andν = 2 for deep circuits. We prove these results for state preparation of general Gaussian states and number states. We also provide numerical evidence demonstrating that the results extend to general state preparation tasks. As circuit energy is a controllable parameter, we provide a strategy to mitigate the barren plateau in bosonic continuous-variable VQCs. 
    more » « less
  2. Abstract The emergence of quantum sensor networks has presented opportunities for enhancing complex sensing tasks, while simultaneously introducing significant challenges in designing and analyzing quantum sensing protocols due to the intricate nature of entanglement and physical processes. Supervised learning assisted by an entangled sensor network (SLAEN) (Zhuang and Zhang 2019Phys. Rev.X9041023) represents a promising paradigm for automating sensor-network design through variational quantum machine learning. However, the original SLAEN, constrained by the Gaussian nature of quantum circuits, is limited to learning linearly separable data. Leveraging the universal quantum control available in cavity quantum electrodynamics experiments, we propose a generalized SLAEN capable of handling nonlinear data classification tasks. We establish a theoretical framework for physical-layer data classification to underpin our approach. Through training quantum probes and measurements, we uncover a threshold phenomenon in classification error across various tasks—when the energy of probes exceeds a certain threshold, the error drastically diminishes to zero, providing a significant improvement over the Gaussian SLAEN. Despite the non-Gaussian nature of the problem, we offer analytical insights into determining the threshold and residual error in the presence of noise. Our findings carry implications for radio-frequency photonic sensors and microwave dark matter haloscopes. 
    more » « less
  3. Abstract Variational quantum circuits (VQCs) have shown great potential in near-term applications. However, the discriminative power of a VQC, in connection to its circuit architecture and depth, is not understood. To unleash the genuine discriminative power of a VQC, we propose a VQC system with the optimal classical post-processing—maximum-likelihood estimation on measuring all VQC output qubits. Via extensive numerical simulations, we find that the error of VQC quantum data classification typically decays exponentially with the circuit depth, when the VQC architecture is extensive—the number of gates does not shrink with the circuit depth. This fast error suppression ends at the saturation towards the ultimate Helstrom limit of quantum state discrimination. On the other hand, non-extensive VQCs such as quantum convolutional neural networks are sub-optimal and fail to achieve the Helstrom limit, demonstrating a trade-off between ansatz complexity and classification performance in general. To achieve the best performance for a given VQC, the optimal classical post-processing is crucial even for a binary classification problem. To simplify VQCs for near-term implementations, we find that utilizing the symmetry of the input properly can improve the performance, while oversimplification can lead to degradation. 
    more » « less
  4. Abstract Quantum Approximate Optimization algorithm (QAOA) aims to search for approximate solutions to discrete optimization problems with near-term quantum computers. As there are no algorithmic guarantee possible for QAOA to outperform classical computers, without a proof that bounded-error quantum polynomial time (BQP) ≠ nondeterministic polynomial time (NP), it is necessary to investigate the empirical advantages of QAOA. We identify a computational phase transition of QAOA when solving hard problems such as SAT—random instances are most difficult to train at a critical problem density. We connect the transition to the controllability and the complexity of QAOA circuits. Moreover, we find that the critical problem density in general deviates from the SAT-UNSAT phase transition, where the hardest instances for classical algorithms lies. Then, we show that the high problem density region, which limits QAOA’s performance in hard optimization problems (reachability deficits), is actually a good place to utilize QAOA: its approximation ratio has a much slower decay with the problem density, compared to classical approximate algorithms. Indeed, it is exactly in this region that quantum advantages of QAOA over classical approximate algorithms can be identified. 
    more » « less