skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Dongzhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Davemaoite (CaSiO3 perovskite) is considered the third most abundant phase in the pyrolytic lower mantle and the second most abundant phase in the subducted mid-ocean ridge basalt (MORB). During the partial melting of the pyrolytic upper mantle, incompatible titanium (Ti) becomes enriched in the basaltic magma, forming Ti-rich MORB. Davemaoite is considered an important Ti-bearing mineral in subducted slabs by forming a Ca(Si,Ti)O3 solid solution. However, the crystal structure and compressibility of Ca(Si,Ti)O3 perovskite solid solution at relevant pressure and temperature conditions had not been systematically investigated. In this study, we investigated the structure and equations of state of Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites at room temperature up to 82 and 64 GPa, respectively, by synchrotron X-ray diffraction (XRD). We found that both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites have a tetragonal structure up to the maximum pressures investigated. Based on the observed data and compared to pure CaSiO3 davemaoite, both Ca(Si0.83Ti0.17)O3 and Ca(Si0.75Ti0.25)O3 perovskites are expected to be less dense up to the core-mantle boundary (CMB), and specifically ~1–2% less dense than CaSiO3 davemaoite in the pressure range of the transition zone (15–25 GPa). Our results suggest that the presence of Ti-bearing davemaoite phases may result in a reduction in the average density of the subducting slabs, which in turn promotes their stagnation in the lower mantle. The presence of low-density Ti-bearing davemaoite phases and subduction of MORB in the lower mantle may also explain the seismic heterogeneity in the lower mantle, such as large low shear velocity provinces (LLSVPs).

     
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. Abstract

    Incorporation of ferric iron in mantle silicates stabilizes different crystal structures and changes phase transition conditions, thus impacting seismic wave speeds and discontinuities. In MgSiO3-Fe2O3 mixtures, recent experiments indicate the coexistence of fully oxidized iron-rich (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 with Fe-poor silicate (wadsleyite or bridgmanite) and stishovite at 15 to 27 GPa and 1773 to 2000 K, conditions relevant to subducted lithosphere in the Earth’s transition zone and uppermost lower mantle. X-ray diffraction measurements show that (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 recovered from these conditions adopts the R3c LiNbO3-type structure, which transforms to the bridgmanite structure again between 18.3 GPa and 24.7 GPa at 300 K. Diffraction observations are used to obtain the equation of state of the LiNbO3-type phase up to 18.3 GPa. These observations combined with multi-anvil experiments suggest that the stable phase of (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 is bridgmanite at 15-27 GPa, which transforms on decompression to LiNbO3-type structure. Our calculation revealed that ordering of the ferric ion reduces the kinetic energy barrier of the transition between (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 LiNbO3 structure and bridgmanite relative to the MgSiO3 akimotoite-bridgmanite system. Dense Fe3+-rich bridgmanite structure is thus stable at substantially shallower depths than MgSiO3 bridgmanite and would promote subduction.

     
    more » « less
    Free, publicly-accessible full text available July 4, 2025
  3. Abstract

    Jeffbenite (Mg3Al2Si3O12) is a tetragonal phase found in so far only in superdeep diamonds, and its thermoelastic parameters are a prerequisite for determining entrapment pressures as it is regarded as a potential indicator for superdeep diamonds. In this study, the thermoelastic properties of synthetic Fe3+‐jeffbenite were measured up to 33.7 GPa and 750 K. High‐temperature static compression data were fitted, giving (∂KT0/T)P = −0.0107 (4) GPa/K andαT = 3.50 (3) × 10−5 K−1. The thermoelastic properties and phase stability are applied to modeling isomekes, orP‐Tpaths intersecting possible conditions of entrapment in diamond. We calculate that under ideal exhumation, jeffbenite entrapped at mantle transition zone conditions will exhibit a high remnant pressure at 300 K (Pinc) of ∼5.0 GPa. Elastic geobarometry on future finds of jeffbenite inclusions can use the new equation of state to estimate entrapment pressures for this phase with still highly uncertain stability field in the mantle.

     
    more » « less
    Free, publicly-accessible full text available March 28, 2025
  4. Abstract

    Metasomatized mantle xenoliths containing hydrous minerals, such as amphiboles, serpentine, and phlogopite, likely represent the potential mineralogical compositions of the metasomatized upper mantle, where low seismic velocities are commonly observed. This study presents the first experimentally determined single‐crystal elasticity model of an Fe‐free near Ca, Mg‐endmember amphibole tremolite at high pressure and/or temperature conditions (maximum pressure 7.3(1) GPa, maximum temperature 700 K) using Brillouin spectroscopy. We found that sound velocities of amphiboles strongly depend on the Fe content. We then calculated the sound velocities of 441 hydrous‐mineral‐bearing mantle xenoliths collected around the globe, and quantitatively evaluated the roles that amphiboles, phlogopite and serpentine played in producing the low velocity anomalies in the metasomatized upper mantle.

     
    more » « less
    Free, publicly-accessible full text available March 16, 2025
  5. Abstract

    Dirac materials offer exciting opportunities to explore low-energy carrier dynamics and novel physical phenomena, especially their interaction with magnetism. In this context, this work focuses on studies of pressure control on the magnetic state of EuMnBi2, a representative magnetic Dirac semimetal, through time-domain synchrotron Mössbauer spectroscopy in151Eu. Contrary to the previous report that the antiferromagnetic order is suppressed by pressure above 4 GPa, we have observed robust magnetic order up to 33.1 GPa. Synchrotron-based x-ray diffraction experiment on a pure EuMnBi2sample shows that the tetragonal crystal lattice remains stable up to at least 31.7 GPa.

     
    more » « less
  6. The delafossites are a class of layered metal oxides that are notable for being able to exhibit optical transparency alongside an in-plane electrical conductivity, making them promising platforms for the development of transparent conductive oxides. Pressure-induced polymorphism offers a direct method for altering the electrical and optical properties in this class, and although the copper delafossites have been studied extensively under pressure, the silver delafossites remain only partially studied. We report two new high-pressure polymorphs of silver ferrite delafossite, AgFeO2, that are stabilized above ∼6 and ∼14 GPa. In situ X-ray diffraction and vibrational spectroscopy measurements are used to examine the structural changes across the two phase transitions. The high-pressure structure between 6 and 14 GPa is assigned as a monoclinic C2/c structure that is analogous to the high-pressure phase reported for AgGaO2. Nuclear resonant forward scattering reveals no change in the spin state or valence state at the Fe3+ site up to 15.3(5) GPa. 
    more » « less
    Free, publicly-accessible full text available May 27, 2025
  7. Abstract

    Alkali-rich aluminous high-pressure phases including calcium-ferrite (CF) type NaAlSiO4 are thought to constitute ~20% by volume of subducted mid-ocean ridge basalt (MORB) under lower mantle conditions. As a potentially significant host for incompatible elements in the deep mantle, knowledge of the crystal structure and physical properties of CF-type phases is therefore important to understanding the crystal chemistry of alkali storage and recycling in the Earth’s mantle. We determined the evolution of the crystal structure of pure CF-NaAlSiO4 and Fe-bearing CF-NaAlSiO4 at pressures up to ~45 GPa using synchrotron-based, single-crystal X-ray diffraction. Using the high-pressure lattice parameters, we also determined a third-order Birch-Murnaghan equation of state, with V0 = 241.6(1) Å3, KT0 = 220(4) GPa, and KT0′ = 2.6(3) for Fe-free CF, and V0 = 244.2(2) Å3, KT0 = 211(6) GPa, and KT0′ = 2.6(3) for Fe-bearing CF. The addition of Fe into CF-NaAlSiO4 resulted in a 10 ± 5% decrease in the stiffest direction of linear compressibility along the c-axis, leading to stronger elastic anisotropy compared with the Fe-free CF phase. The NaO8 polyhedra volume is 2.6 times larger and about 60% more compressible than the octahedral (Al,Si)O6 sites, with K0NaO8 = 127 GPa and K0(Al,Si)O6 ~304 GPa. Raman spectra of the pure CF-type NaAlSiO4 sample shows that the pressure coefficient of the mean vibrational mode, 1.60(7) cm–1/GPa, is slightly higher than 1.36(6) cm−1/GPa obtained for the Fe-bearing CF-NaAlSiO4 sample. The ability of CF-type phases to contain incompatible elements such as Na beyond the stability field of jadeite requires larger and less-compressible NaO8 polyhedra. Detailed high-pressure crystallographic information for the CF phases provides knowledge on how large alkali metals are hosted in alumina framework structures with stability well into the lowermost mantle.

     
    more » « less