skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Hualiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 21, 2025
  2. The inverse design of meta-optics has received much attention in recent years. In this paper, we propose a GPU-friendly inverse design framework based on improved eigendecomposition-free rigorous diffraction interface theory, which offers up to 16.2 × speedup over the traditional inverse design based on rigorous coupled-wave analysis. We further improve the framework’s flexibility by introducing a hybrid parameterization combining neural-implicit and traditional shape optimization. We demonstrate the effectiveness of our framework through intricate tasks, including the inverse design of reconfigurable free-form meta-atoms.

     
    more » « less
  3. High-resolution endoscopic optical imaging is a crucial technique in biological imaging to examine the inside organs. There is a trade-off between lateral resolution and depth of focus in such applications. Traditional Optical Coherence Tomography provides an increased depth range but falls short of desired resolution. The combination of both higher resolution and larger imaging depth of focus of metalens can improve the clinical utility of endoscopic optical imaging. In this work, we designed, analyzed, and fabricated a 500 µm diameter metalens operating at 1300 nm to achieve high resolution and large imaging depth of focus, therefore, addressing this need. The full width at half maximum and depth of focus for the proposed metalens are 3.10 and 286 µm, respectively. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance. 
    more » « less
  7. For the first time, we are able to generate over 1000 diffraction spots from a graded photonic super-crystal with a unit super-cell size of 12a × 12a where a is the lattice constant and hole radii are gradually changed in dual directions. The diffraction pattern from the graded photonic super-crystal reveals unique diffraction properties. The first order diffractions of (±1,0) or (0,±1) disappear. Fractional diffraction orders are observed in the diffraction pattern inside a square with vertices of (1,1), (1,−1), (−1,−1) and (−1,−1). The fractional diffraction can be understood from lattices with a period of a. However, a dual-lattice model is considered in order to explain higher-order diffractions. E-field intensity simulations show a coupling and re-distribution among fractional orders of Bloch waves. There are a total of 12 × 12 spots in E-field intensity in the unit supercell corresponding to 12 × 12 fractional diffraction orders in the diffraction pattern and 12 × 12 fractional orders of momentum in the first Brillouin zone in k-space. 
    more » « less
  8. Vortex beams (VBs) carrying orbital angular moment (OAM) modes have been proven to be promising resources for increasing communication capacity. Although considerable attention has been paid on metasurface-based VB generators due to the unprecedented advantages of metasurface, most applications are usually limited at a single band with a fixed OAM mode. In this work, an emerging dual-band reflection-type coding metasurface is proposed to mitigate these issues by newly engineered meta-atoms, which could achieve independent 2-bit phase modulations at two frequency bands. The proposed coding metasurface could efficiently realize and fully control dual-band VBs carrying frequency selective OAM modes under the linearly polarized incidence. As the first illustrative example, a dual-band VB generator with normal beam direction is fabricated and characterized at two widely used communication bands (Ku and Ka bands). Moreover, by encoding proper coding sequences, versatile beams carrying frequency selective OAM modes can be achieved. Therefore, by adding a gradient phase sequence to the first VB generator, the second one is designed to steer the generated beams to a preset direction, which could enable diverse scenarios. The measurement results of both VB generators agree very well with the numerical ones, validating the full control capability of the proposed approach.

     
    more » « less