skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Minglong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 13, 2025
  2. Free, publicly-accessible full text available October 28, 2025
  3. The advent of 5G technology introduces significant advancements in speed, latency, and device connectivity, but also poses complex security challenges. Among typical denial-of-service (DoS) attacks, jamming attack can severely degrade network performance by interfering critical communication channels. To address this issue, we propose a novel security solution utilizing multipath communication, which distributes message segments across multiple paths to ensure message recovery even when some paths are compromised. This strategy enhances network resilience and aligns with zero-trust architecture principles. Moreover, the proposed scheme has been implemented in our testbed to validate the concept and assess the network performance under jamming attacks. Our findings demonstrate that this method eliminates the negative impacts caused by DoS attacks, maintaining the integrity and availability of critical network services. The results highlight the robustness of multipath communication in securing 5G networks against sophisticated attacks, thereby safeguarding essential communications in dynamic and potentially hostile environments. 
    more » « less
    Free, publicly-accessible full text available October 28, 2025
  4. The open radio access network (O-RAN) represents a paradigm shift in RAN architecture, integrating intelligence into communication networks via xApps -- control applications for managing RAN resources. This integration facilitates the adoption of AI for network optimization and resource management. However, there is a notable gap in practical network performance analyzers capable of assessing the functionality and efficiency of xApps in near real-time within operational networks. Addressing this gap, this article introduces a comprehensive network performance analyzer, tailored for the near-real time RAN intelligent controller. We present the design, development, and application scenarios for this testing framework, including its components, software, and tools, providing an end-to-end solution for evaluating the performance of xApps in O-RAN environments. 
    more » « less
    Free, publicly-accessible full text available September 27, 2025
  5. Free, publicly-accessible full text available October 28, 2025
  6. Free, publicly-accessible full text available October 28, 2025
  7. Free, publicly-accessible full text available October 28, 2025
  8. This demonstration explores the security concerns in 5G and beyond networks within open radio access network (O-RAN) deployments, focusing on active attacks disrupting cellular communications. An xApp developed on the open artificial intelligence cellular (OAIC) platform enables on-the-fly creation and management of network slices to mitigate such attacks. The xApp is hosted in the near-real time RAN intelligent controller (RIC) and establishes secure slices for the software radio network it controls. This solution presents a practical approach for resilient and secure network management in dynamic environments. 
    more » « less
  9. Unmanned aerial vehicles (UAVs) have witnessed widespread adoption in the modern world, with their development set to continue into the future. As UAV technology and applications advance, it becomes imperative to understand their communication capabilities. UAVs experience distinct radio propagation conditions compared to ground-based radio nodes, necessitating a critical investigation into aerial radio node performance. This paper analyzes interference in UAV-to-UAV (U2U) communications within drone corridors and proposes an interference mitigation strategy utilizing millimeter wave (mmWave) beamforming. Employing a semi-persistent scheduling approach from the Third Generation Partnership Project (3GPP) sidelink communications for low altitude aerial nodes in drone corridors, the study primarily examines interference from drone clusters within designated air corridors. To assess U2U communication performance, a 3GPP standard-compliant cross-layer simulator is developed. Simulation results demonstrate that employing mmWave beamforming instead of isotropic transmission substantially reduces interference, leading to higher communications reliability and enabling more UAVs to occupy and communicate in the airspace. 
    more » « less