The algal–bacterial shortcut nitrogen removal (ABSNR) process can be used to treat high ammonia strength wastewaters without external aeration. However, prior algal–bacterial SNR studies have been conducted under fixed light/dark periods that were not representative of natural light conditions. In this study, laboratory-scale photo-sequencing batch reactors (PSBRs) were used to treat anaerobic digester sidestream under varying light intensities that mimicked summer and winter conditions in Tampa, FL, USA. A dynamic mathematical model was developed for the ABSNR process, which was calibrated and validated using data sets from the laboratory PSBRs. The model elucidated the dynamics of algal and bacterial biomass growth under natural illumination conditions as well as transformation processes for nitrogen species, oxygen, organic and inorganic carbon. A full-scale PSBR with a 1.2 m depth, a 6-day hydraulic retention time (HRT) and a 10-day solids retention time (SRT) was simulated for treatment of anaerobic digester sidestream. The full-scale PSBR could achieve >90% ammonia removal, significantly reducing the nitrogen load to the mainstream wastewater treatment plant (WWTP). The dynamic simulation showed that ABSNR process can help wastewater treatment facilities meet stringent nitrogen removal standards with low energy inputs.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Free, publicly-accessible full text available April 1, 2025
-
Interest in craft beers is increasing worldwide due to their flavor and variety. However, craft breweries have high water, energy, and carbon dioxide (CO2) demands and generate large quantities of high-strength waste and greenhouse gases. While many large breweries recover energy using anaerobic digestion (AD) and recapture CO2 from beer fermentation, little is known about the economic feasibility of applying these technologies at the scale of small craft breweries. In addition, compounds in hops (Humulus lupulus), which are commonly added to craft beer to provide a bitter or “hoppy” flavor, have been shown to adversely affect anaerobic microbes in ruminant studies. In this study, biochemical methane potential (BMP) assays and anaerobic sequencing batch reactor (ASBR) studies were used to investigate biomethane production from high-strength craft brewery waste, with and without hop addition. A spreadsheet tool was developed to evaluate the economic feasibility of bioenergy and CO2 recovery depending on the brewery’s location, production volume, waste management, CO2 requirement, energy costs, and hop waste addition. The results showed that co-digestion of yeast waste with 20% hops (based on chemical oxygen demand (COD)) resulted in slightly lower methane yields compared with mono-digestion of yeast; however, it did not significantly impact the economic feasibility of AD in craft breweries. The use of AD and CO2 recovery was found to be economically feasible if the brewery’s annual beer production is >50,000 barrels/year.more » « less
-
Abstract Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1–yellow fluorescent protein and PEN2–green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.
-
We often use cues from our environment when we get stuck searching our memories, but prior research has failed to show benefits of cuing with other, randomly selected list items during memory search. What accounts for this discrepancy? We proposed that cues’ content critically determines their effectiveness and sought to select the right cues by building a computational model of how cues affect memory search. Participants ( N = 195 young adults from the United States) recalled significantly more items when receiving our model’s best (vs. worst) cue. Our model provides an account of why some cues better aid recall: Effective cues activate contexts most similar to the remaining items’ contexts, facilitating recall in an unsearched area of memory. We discuss our contributions in relation to prominent theories about the effect of external cues.
-
Controlled experiments are widely applied in many areas such as clinical trials or user behavior studies in IT companies. Recently, it is popular to study experimental design problems to facilitate personalized decision making. In this paper, we investigate the problem of optimal design of multiple treatment allocation for personalized decision making in the presence of observational covariates associated with experimental units (often, patients or users). We assume that the response of a subject assigned to a treatment follows a linear model which includes the interaction between covariates and treatments to facilitate precision decision making. We define the optimal objective as the maximum variance of estimated personalized treatment effects over different treatments and different covariates values. The optimal design is obtained by minimizing this objective. Under a semi-definite program reformulation of the original optimization problem, we use a YALMIP and MOSEK based optimization solver to provide the optimal design. Numerical studies are provided to assess the quality of the optimal design.more » « less
-
Crop diseases are responsible for substantial yield losses worldwide, thereby threatening global food security. In this Research Topic, a collection of high-quality articles reported recent research progress concerning genes, proteins, secondary metabolites involved in the interactions between crop plants and their pathogens as well as utilization of new synthetic chemicals in control of crop diseases. As co-editors of this research topic, we appreciate the contributions from the authors of the papers published under this topic and highlight the three themes drawn from their research findings.more » « less
-
Abstract Urban neighborhoods with locations of environmental contamination, known as brownfields, impact entire neighborhoods, but corrective environmental remedial action on brownfields is often tracked on an individual property basis, neglecting the larger neighborhood-level impact. This study addresses this impact by examining spatial differences between brownfields with unmitigated environmental concerns (open site) and sites that are considered fully mitigated or closed in urban neighborhoods (closed site) on the US census tract scale in Wayne County, MI. Michigan’s Department of Environment, Great Lakes, and Energy’s leaking underground storage tank (LUST) database provided brownfield information for Wayne County. Local indicators of spatial association (LISA) produced maps of spatial clustering and outliers. A McNemar’s test demonstrated significant discordances in LISA categories between LUST open and closed sites ( p < 0.001). Geographically weighted regressions (GWR) evaluated the association between open and closed site spatial density (open-closed) with socioeconomic variables (population density, proportion of White or Black residents, proportion of college educated populations, the percentage of owner-occupied units, vacant units, rented units, and median household value). Final multivariate GWR showed that population density, being Black, college education, vacant units, and renter occupied units were significantly associated ( p < 0.05) with open-closed, and that those associations varied across Wayne County. Increases in Black population was associated with increased open-closed. Increases in vacant units, renter-occupied units, and college education were associated with decreased open-closed. These results provide input for environmental justice research to identify inequalities and discover the distribution of environmental hazards among urban neighborhoods.more » « less