Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ultracold fermionic atoms in optical lattices offer pristine realizations of Hubbard models1, which are fundamental to modern condensed-matter physics2,3. Despite notable advancements4–6, the accessible temperatures in these optical lattice material analogues are still too high to address many open problems7–10. Here we demonstrate a several-fold reduction in temperature6,11–13, bringing large-scale quantum simulations of the Hubbard model into an entirely new regime. This is accomplished by transforming a low-entropy product state into strongly correlated states of interest via dynamic control of the model parameters14,15, which is extremely challenging to simulate classically10. At half-filling, the long-range antiferromagnetic order is close to saturation, leading to a temperature of T /t =0.05−0.05 +0.06 based on comparisons with numerically exact simulations. Doped away from half-filling, it is exceedingly challenging to realize systematically accurate and predictive numerical simulations9. Importantly, we are able to use quantum simulation to identify a new pathway for achieving similarly low temperatures with doping. This is confirmed by comparing short-range spin correlations to state-of-the-art, but approximate, constrainedpath auxiliary-field quantum Monte Carlo simulations16–18. Compared with the cuprates2,19,20, the reported temperatures correspond to a reduction from far above to below room temperature, at which physics such as the pseudogap and stripe phases may be expected3,19,21–24. Our work opens the door to quantum simulations that solve open questions in material science, develop synergies with numerical methods and theoretical studies, and lead to discoveries of new physics8,10.more » « lessFree, publicly-accessible full text available June 26, 2026
-
We explore the possibility of implementing random walks in the manifold of Hartree–Fock–Bogoliubov wave functions. The goal is to extend state-of-the-art quantum Monte Carlo approaches, in particular the constrained-path auxiliary-field quantum Monte Carlo technique, to systems where finite pairing order parameters or complex pairing mechanisms, e.g., Fulde–Ferrell–Larkin–Ovchinnikov pairing or triplet pairing, may be expected. Leveraging the flexibility to define a vacuum state tailored to the physical problem, we discuss a method to use imaginary-time evolution of Hartree–Fock–Bogoliubov states to compute ground state correlations, extending beyond situations spanned by current formalisms. Illustrative examples are provided.more » « less
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available January 20, 2026
-
The Hubbard model is an iconic model in quantum many-body physics and has been intensely studied, especially since the discovery of high-temperature cuprate superconductors. Combining the complementary capabilities of two computational methods, we found superconductivity in both the electron- and hole-doped regimes of the two-dimensional Hubbard model with next-nearest-neighbor hopping. In the electron-doped regime, superconductivity was weaker and was accompanied by antiferromagnetic Néel correlations at low doping. The strong superconductivity on the hole-doped side coexisted with stripe order, which persisted into the overdoped region with weaker hole-density modulation. These stripe orders varied in fillings between 0.6 and 0.8. Our results suggest the applicability of the Hubbard model with next-nearest hopping for describing cuprate high–transition temperature (Tc) superconductivity.more » « less
-
Abstract Model Hamiltonians are regularly derived from first principles to describe correlated matter. However, the standard methods for this contain a number of largely unexplored approximations. For a strongly correlated impurity model system, here we carefully compare a standard downfolding technique with the best possible ground-truth estimates for charge-neutral excited-state energies and wave functions using state-of-the-art first-principles many-body wave function approaches. To this end, we use the vanadocene molecule and analyze all downfolding aspects, including the Hamiltonian form, target basis, double-counting correction, and Coulomb interaction screening models. We find that the choice of target-space basis functions emerges as a key factor for the quality of the downfolded results, while orbital-dependent double-counting corrections diminish the quality. Background screening of the Coulomb interaction matrix elements primarily affects crystal-field excitations. Our benchmark uncovers the relative importance of each downfolding step and offers insights into the potential accuracy of minimal downfolded model Hamiltonians.more » « less
An official website of the United States government

Full Text Available