skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Yanqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Different from traditional tedious CPU-GPU-based training algorithms using gradient descent methods, the software-FPGA co-designed learning algorithm is created to quickly solve a system of linear equations to directly calculate optimal values of hyperparameters of the green granular neural network (GGNN). To reduce both CO2 emissions and energy consumption effectively, a novel green granular convolutional neural network (GGCNN) is developed by using a new classifier that uses GGNNs as building blocks with new fast software-FPGA co-designed learning. Initial simulation results indicate that the FPGA equation solver code runs faster than the Python equation solver code. Therefore, implementing the GGCNN with software-FPGA co-designed learning is feasible. In the future, The GGCNN will be evaluated by comparing with a convolutional neural network with the traditional software-CPU-GPU-based learning in terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption by using popular datasets. New algorithms will be created to divide the inputs to different input groups for building different GGNNs to solve the curse of dimensionality. 
    more » « less
  2. A novel green granular neural network (GGNN) with new fast software-FPGA co-designed learning is developed to reduce both CO2 emissions and energy consumption more effectively than popular neural networks with the traditional software-CPU-GPU-based learning. Different from traditional tedious CPU-GPU-based training algorithms using gradient descent methods and other methods such as genetic algorithms , the software-FPGA co-designed training algorithm may quickly solve a system of linear equations to directly calculate optimal values of hyperparameters of the GGNN. Initial simulation results indicates that the FPGA equation solver code ran faster than the Python equation solver code. Therefore, implementing the GGNN with software-FPGA co-designed learning is feasible. In addition, the shallow high-speed GGNN is explainable because it can generate interpretable granular If-Then rules. In the future, The GGNN will be evaluated by comparing with other machine learning models with traditional software-based learning in terms of speeds, model sizes, accuracy, CO2 emissions and energy consumption by using popular datasets. New algorithms will be created to divide the inputs to different input groups that will be used to build different small-size GGNNs to solve the curse of dimensionality. Additionally, the explainable green granular convolutional neural network will be developed by using the GGNNs as basic building blocks to efficiently solve image recognition problems. 
    more » « less
  3. Anandkumar, Animashree (Ed.)
    Recommender systems have been extensively used by the entertainment industry, business marketing and the biomedical industry. In addition to its capacity of providing preference-based recommendations as an unsupervised learning methodology, it has been also proven useful in sales forecasting, product introduction and other production related businesses. Since some consumers and companies need a recommendation or prediction for future budget, labor and supply chain coordination, dynamic recommender systems for precise forecasting have become extremely necessary. In this article, we propose a new recommendation method, namely the dynamic tensor recommender system (DTRS), which aims particularly at forecasting future recommendation. The proposed method utilizes a tensor-valued function of time to integrate time and contextual information, and creates a time-varying coefficient model for temporal tensor factorization through a polynomial spline approximation. Major advantages of the proposed method include competitive future recommendation predictions and effective prediction interval estimations. In theory, we establish the convergence rate of the proposed tensor factorization and asymptotic normality of the spline coefficient estimator. The proposed method is applied to simulations, IRI marketing data and Last.fm data. Numerical studies demonstrate that the proposed method outperforms existing methods in terms of future time forecasting. 
    more » « less
  4. null (Ed.)
    This article provides an overview of tensors, their properties, and their applications in statistics. Tensors, also known as multidimensional arrays, are generalizations of matrices to higher orders and are useful data representation architectures. We first review basic tensor concepts and decompositions, and then we elaborate traditional and recent applications of tensors in the fields of recommender systems and imaging analysis. We also illustrate tensors for network data and explore the relations among interacting units in a complex network system. Some canonical tensor computational algorithms and available software libraries are provided for various tensor decompositions. Future research directions, including tensors in deep learning, are also discussed. 
    more » « less
  5. null (Ed.)
  6. Abstract Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar ‘Feizixiao’ was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair ofCONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops. 
    more » « less