skip to main content


Search for: All records

Creators/Authors contains: "Zhao, He"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 3, 2025
  2. Free, publicly-accessible full text available January 31, 2025
  3. Supramolecular nanocages with inner cavities have attracted increasing attention due to their fascinating molecular aesthetics and vast number of potential applications. Even though a wide array of discrete supramolecular cages with precisely designed sizes and shapes have been established, the controlled assembly of higher-order supramolecular frameworks from discrete molecular entities still represents a formidable challenge. In this work, a novel metallo-organic cage [Zn12L4] was assembled based on a triphenylene-cored hexapod terpyridine ligand. Synchotron X-ray analysis revealed a pair of enantiomeric cages in the crystal with flexible ligands twisted clockwise or anticlockwise due to steric hindrance in the structure. Interestingly, due to the strong π–π intermolecular interaction between triphenylene units, a controlled hierarchical packing of sphere-like cages in the crystal was established having a sparse packing mode with huge channels of around 3.6 nm diameter. This research sheds light on the design of strong π–π interactions in supramolecular hierarchical packing and materials science. 
    more » « less
  4. Abstract

    Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe3Sn2as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena.

     
    more » « less
  5. Correlated oxides can exhibit complex magnetic patterns. Understanding how magnetic domains form in the presence of disorder and their robustness to temperature variations has been of particular interest, but atomic scale insight has been limited. We use spin-polarized scanning tunneling microscopy to image the evolution of spin-resolved modulations originating from antiferromagnetic (AF) ordering in a spin-orbit Mott insulator perovskite iridate Sr 3 Ir 2 O 7 as a function of chemical composition and temperature. We find that replacing only several percent of lanthanum for strontium leaves behind nanometer-scale AF puddles clustering away from lanthanum substitutions preferentially located in the middle strontium oxide layer. Thermal erasure and reentry into the low-temperature ground state leads to a spatial reorganization of the AF puddles, which nevertheless maintain scale-invariant fractal geometry in each configuration. Our experiments reveal multiple stable AF configurations at low temperature and shed light onto spatial fluctuations of the AF order around atomic scale disorder in electron-doped Sr 3 Ir 2 O 7 . 
    more » « less