Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract field of view and 0.$${28}^{\circ}$$ phase resolution ( ~ 0.$${2}{\pi}$$ in air) for experiments with an endoscopic fiber bundle. Since the spectral functionality is encoded directly in the imaging lens, the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition, interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.$${1}{\lambda}$$ -
Abstract Sub-wavelength diffractive optics, commonly known as meta-optics, present a complex numerical simulation challenge, due to their multi-scale nature. The behavior of constituent sub-wavelength scatterers, or meta-atoms, needs to be modeled by full-wave electromagnetic simulations, whereas the whole meta-optical system can be modeled using ray/ Fourier optics. Most simulation techniques for large-scale meta-optics rely on the local phase approximation (LPA), where the coupling between dissimilar meta-atoms is neglected. Here we introduce a physics-informed neural network, coupled with the overlapping boundary method, which can efficiently model the meta-optics while still incorporating all of the coupling between meta-atoms. We demonstrate the efficacy of our technique by designing 1mm aperture cylindrical meta-lenses exhibiting higher efficiency than the ones designed under LPA. We experimentally validated the maximum intensity improvement (up to 53%) of the inverse-designed meta-lens. Our reported method can design large aperture ( ~ 104 − 105
λ ) meta-optics in a reasonable time (approximately 15 minutes on a graphics processing unit) without relying on the LPA. -
Many emerging, high-speed, reconfigurable optical systems are limited by routing complexity when producing dynamic, two-dimensional (2D) electric fields. We propose a gradient-based inverse-designed, static phase-mask doublet to generate arbitrary 2D intensity wavefronts using a one-dimensional (1D) intensity spatial light modulator (SLM). We numerically simulate the capability of mapping each point in a 49 element 1D array to a distinct
2D spatial distribution. Our proposed method will significantly relax the routing complexity of electrical control signals, possibly enabling high-speed, sub-wavelength 2D SLMs leveraging new materials and pixel architectures.