skip to main content

Search for: All records

Creators/Authors contains: "Zhou, Mo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While over-parameterization is widely believed to be crucial for the success of optimization for the neural networks, most existing theories on over-parameterization do not fully explain the reason -- they either work in the Neural Tangent Kernel regime where neurons don't move much, or require an enormous number of neurons. In practice, when the data is generated using a teacher neural network, even mildly over-parameterized neural networks can achieve 0 loss and recover the directions of teacher neurons. In this paper we develop a local convergence theory for mildly over-parameterized two-layer neural net. We show that as long as the loss is already lower than a threshold (polynomial in relevant parameters), all student neurons in an over-parameterized two-layer neural network will converge to one of teacher neurons, and the loss will go to 0. Our result holds for any number of student neurons as long as it is at least as large as the number of teacher neurons, and our convergence rate is independent of the number of student neurons. A key component of our analysis is the new characterization of local optimization landscape -- we show the gradient satisfies a special case of Lojasiewicz property which is different frommore »local strong convexity or PL conditions used in previous work.« less
  2. Self-supervised learning has signi ficantly improved the performance of many NLP tasks. In this paper, we highlight a key advantage of self-supervised learning - when applied to data generated by topic models, self-supervised learning can be oblivious to the specifi c model, and hence is less susceptible to model misspeci fication. In particular, we prove that commonly used self-supervised objectives based on reconstruction or contrastive samples can both recover useful posterior information for general topic models. Empirically, we show that the same objectives can perform competitively against posterior inference using the correct model, while outperforming posterior inference using misspecifi ed model.
  3. Numerous empirical evidence has corroborated that the noise plays a crucial rule in effective and efficient training of deep neural networks. The theory behind, however, is still largely unknown. This paper studies this fundamental problem through training a simple two-layer convolutional neural network model. Although training such a network requires to solve a non-convex optimization problem with a spurious local optimum and a global optimum, we prove that a perturbed gradient descent algorithm in conjunction with noise annealing is guaranteed to converge to a global optimum in polynomial time with arbitrary initialization. This implies that the noise enables the algorithm to efficiently escape from the spurious local optimum. Numerical experiments are provided to support our theory.
  4. Free, publicly-accessible full text available October 1, 2023