skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Zhou, Ranyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 14, 2025
  2. Free, publicly-accessible full text available June 23, 2025
  3. Free, publicly-accessible full text available June 12, 2025
  4. In this work, we leverage the uni-polar switching behavior of Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) to develop an efficient digital Computing-in-Memory (CiM) platform named XOR-CiM. XOR-CiM converts typical MRAM sub-arrays to massively parallel computational cores with ultra-high bandwidth, greatly reducing energy consumption dealing with convolutional layers and accelerating X(N)OR-intensive Binary Neural Networks (BNNs) inference. With a similar inference accuracy to digital CiMs, XOR-CiM achieves ∼4.5× and 1.8× higher energy-efficiency and speed-up compared to the recent MRAM-based CiM platforms. 
    more » « less
  5. In this work, we propose a Parallel Processing-In-DRAM architecture named P-PIM leveraging the high density of DRAM to enable fast and flexible computation. P-PIM enables bulk bit-wise in-DRAM logic between operands in the same bit-line by elevating the analog operation of the memory sub-array based on a novel dual-row activation mechanism. With this, P-PIM can opportunistically perform a complete and inexpensive in-DRAM RowHammer (RH) self-tracking and mitigation technique to protect the memory unit against such a challenging security vulnerability. Our results show that P-PIM achieves ~72% higher energy efficiency than the fastest charge-sharing-based designs. As for the RH protection, with a worst-case slowdown of ~0.8%, P-PIM archives up to 71% energy-saving over the SRAM/CAM-based frameworks and about 90% saving over DRAM-based frameworks. 
    more » « less
  6. Convolutional Neural Networks (CNNs) are widely used due to their effectiveness in various AI applications such as object recognition, speech processing, etc., where the multiply-and-accumulate (MAC) operation contributes to ∼95% of the computation time. From the hardware implementation perspective, the performance of current CMOS-based MAC accelerators is limited mainly due to their von-Neumann architecture and corresponding limited memory bandwidth. In this way, silicon photonics has been recently explored as a promising solution for accelerator design to improve the speed and power-efficiency of the designs as opposed to electronic memristive crossbars. In this work, we briefly study recent silicon photonics accelerators and take initial steps to develop an open-source and adaptive crossbar architecture simulator for that. Keeping the original functionality of the MNSIM tool [1], we add a new photonic mode that utilizes the pre-existing algorithm to work with a photonic Phase Change Memory (pPCM) based crossbar structure. With inputs from the CNN's topology, the accelerator configuration, and experimentally-benchmarked data, the presented simulator can report the optimal crossbar size, the number of crossbars needed, and the estimation of total area, power, and latency. 
    more » « less