skip to main content

Search for: All records

Creators/Authors contains: "Zinnert, Julie C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal landscapes are naturally shifting mosaics of distinct ecosystems that are rapidly migratingwith sealevel rise. Previous work illustrates that transitions among individual ecosystems have disproportionate impacts on the global carbon cycle, but this cannot address nonlinear interactions between multiple ecosystems that potentially cascade across the coastal landscape. Here, we synthesize carbon stocks, accumulation rates, and regional land cover data over 36 years (1984 and 2020) for a variety of ecosystems across a large portion of the rapidly transgressing mid-Atlantic coast. The coastal landscape of the Virginia Eastern Shore consists of temperate forest, salt marsh, seagrass beds, barrier islands, and coastal lagoons. We found that rapid losses and gains within individual ecosystems largely offset each other, which resulted in relatively stable areas for the different ecosystems, and a 4% (196.9 Gg C) reduction in regional carbon storage. However, new metrics of carbon replacement times indicated that it would take only 7 years of carbon accumulation in surviving ecosystems to compensate this loss. Our findings reveal unique compensatory mechanisms at the scale of entire landscapes that quickly absorb losses and facilitate increased regional carbon storage in the face of historical and contemporary sea-level rise. However, the strength of these compensatory mechanisms may diminish as climate change exacerbates the magnitude of carbon losses. 
    more » « less
    Free, publicly-accessible full text available September 15, 2024
  2. Kim, Daehyun (Ed.)
    Nutrient enrichment alters plant community structure and function at a global scale. Coastal plant systems are expected to experience increased rates of nitrogen and phosphorus deposition by 2100, caused mostly by anthropogenic activity. Despite high density of studies investigating connections between plant community structure and ecosystem function in response to nutrient addition, inconsistencies in system response based on the ecosystem in question calls for more detailed analyses of nutrient impacts on community organization and resulting productivity response. Here, we focus on nutrient addition impacts on community structure and organization as well as productivity of different lifeforms in a coastal grassland. We established long-term nutrient enrichment plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments. In 2017 we collected graminoid and forb productivity, root productivity, and community composition for each plot. We found no N x P interaction, but N enrichment was a significant main effect on productivity, highlighting N limitation in coastal systems. Importantly, nutrient enrichment treatments did not alter root productivity. However, all treatments caused significant differences in community composition. Using rank abundance curves, we determined that community composition differences were driven by increased dominance of nitrophilous graminoids, re-organization of subordinate species, and species absences in N and NP plots. Results of this study highlight how coastal grassland communities are impacted by nutrient enrichment. We show that community re-organization, increased dominance, and absence of critical species are all important mechanisms that reflect community-level impacts of nutrient enrichment in our coastal grassland site. 
    more » « less
  3. abstract Coastal ecosystems play a disproportionately large role in society, and climate change is altering their ecological structure and function, as well as their highly valued goods and services. In the present article, we review the results from decade-scale research on coastal ecosystems shaped by foundation species (e.g., coral reefs, kelp forests, coastal marshes, seagrass meadows, mangrove forests, barrier islands) to show how climate change is altering their ecological attributes and services. We demonstrate the value of site-based, long-term studies for quantifying the resilience of coastal systems to climate forcing, identifying thresholds that cause shifts in ecological state, and investigating the capacity of coastal ecosystems to adapt to climate change and the biological mechanisms that underlie it. We draw extensively from research conducted at coastal ecosystems studied by the US Long Term Ecological Research Network, where long-term, spatially extensive observational data are coupled with shorter-term mechanistic studies to understand the ecological consequences of climate change. 
    more » « less
  4. null (Ed.)
    Abstract The spatial pattern of vegetation patchiness may follow universal characteristic rules when the system is close to critical transitions between alternative states, which improves the anticipation of ecosystem-level state changes which are currently difficult to detect in real systems. However, the spatial patterning of vegetation patches in temperature-driven ecosystems have not been investigated yet. Here, using high-resolution imagery from 1972 to 2013 and a stochastic cellular automata model, we show that in a North American coastal ecosystem where woody plant encroachment has been happening, the size distribution of woody patches follows a power law when the system approaches a critical transition, which is sustained by the local positive feedbacks between vegetation and the surrounding microclimate. Therefore, the observed power law distribution of woody vegetation patchiness may be suggestive of critical transitions associated with temperature-driven woody plant encroachment in coastal and potentially other ecosystems. 
    more » « less
  5. null (Ed.)
    Maritime forests are threatened by sea-level rise, storm surge and encroachment of salt-tolerant species. On barrier islands, these forested communities must withstand the full force of tropical storms, hurricanes and nor’easters while the impact is reduced for mainland forests protected by barrier islands. Geographic position may account for differences in maritime forest resilience to disturbance. In this study, we quantify two geographically distinct maritime forests protected by dunes on Virginia’s Eastern Shore (i.e., mainland and barrier island) at two time points (15 and 21 years apart, respectively) to determine whether the trajectory is successional or presenting evidence of disassembly with sea-level rise and storm exposure. We hypothesize that due to position on the landscape, forest disassembly will be higher on the barrier island than mainland as evidenced by reduction in tree basal area and decreased species richness. Rate of relative sea-level rise in the region was 5.9 ± 0.7 mm yr−1 based on monthly mean sea-level data from 1975 to 2017. Savage Neck Dunes Natural Area Preserve maritime forest was surveyed using the point quarter method in 2003 and 2018. Parramore Island maritime forest was surveyed in 1997 using 32 m diameter circular plots. As the island has been eroding over the past two decades, 2016 Landsat imagery was used to identify remaining forested plots prior to resurveying. In 2018, only plots that remained forested were resurveyed. Lidar was used to quantify elevation of each point/plot surveyed in 2018. Plot elevation at Savage Neck was 1.93 ± 0.02 m above sea level, whereas at Parramore Island, elevation was lower at 1.04 ± 0.08 m. Mainland dominant species, Acer rubrum, Pinus taeda, and Liquidambar styraciflua, remained dominant over the study period, with a 14% reduction in the total number of individuals recorded. Basal area increased by 11%. Conversely, on Parramore Island, 33% of the former forested plots converted to grassland and 33% were lost to erosion and occur as ghost forest on the shore or were lost to the ocean. Of the remaining forested plots surveyed in 2018, dominance switched from Persea palustris and Juniperus virginiana to the shrub Morella cerifera. Only 46% of trees/shrubs remained and basal area was reduced by 84%. Shrub basal area accounted for 66% of the total recorded in 2018. There are alternative paths to maritime forest trajectory which differ for barrier island and mainland. Geographic position relative to disturbance and elevation likely explain the changes in forest community composition over the timeframes studied. Protected mainland forest at Savage Neck occurs at higher mean elevation and indicates natural succession to larger and fewer individuals, with little change in mixed hardwood-pine dominance. The fronting barrier island maritime forest on Parramore Island has undergone rapid change in 21 years, with complete loss of forested communities to ocean or conversion to mesic grassland. Of the forests remaining, dominant evergreen trees are now being replaced with the expanding evergreen shrub, Morella cerifera. Loss of biomass and basal area has been documented in other low elevation coastal forests. Our results indicate that an intermediate shrub state may precede complete loss of woody communities in some coastal communities, providing an alternative mechanism of resilience. 
    more » « less
  6. null (Ed.)
    Despite recent advances, we still do not understand how chronic nutrient enrichment impacts coastal plant community structure and function. We aimed to clarify such impacts by testing for differences in ecosystem productivity and multiple community metrics in response to fertilization. We established plots in 2015 consisting of control (C), nitrogen (N), phosphorus (P), and nitrogen + phosphorus (NP) treatments in a mid-Atlantic coastal grassland. In 2017 we collected aboveground biomass, functional traits, and species abundance for each plot. Our findings indicate a synergistic co-limitation, such that NP plots were more productive than all other treatments. A combination of traits responsible for competition and nutrient uptake (i.e., height and δ15N) caused trait-based divergence of N and NP plots from C and P plots. Functional trait-based composition patterns differed from species composition and lifeform abundance patterns, highlighting complexities of community response to nutrient enrichment. While trait-based functional alpha-diversity did not differ among nutrient treatments, it was positively correlated with biomass production, suggesting nutrients may impact functional alpha-diversity indirectly through increased productivity. Increased functional alpha-diversity could be a mechanism of co-existence emerging as productivity increases. These results have important implications for understanding how plant communities in low-productivity coastal systems are altered by fertilization. 
    more » « less
  7. null (Ed.)