skip to main content

Search for: All records

Creators/Authors contains: "van de Koppel, Johan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BACKGROUND Evaluating effects of global warming from rising atmospheric carbon dioxide (CO 2 ) concentrations requires resolving the processes that drive Earth’s carbon stocks and flows. Although biogeomorphic wetlands (peatlands, mangroves, salt marshes, and seagrass meadows) cover only 1% of Earth’s surface, they store 20% of the global organic ecosystem carbon. This disproportionate share is fueled by high carbon sequestration rates per unit area and effective storage capacity, which greatly exceed those of oceanic and forest ecosystems. We highlight that feedbacks between geomorphology and landscape-building wetland vegetation underlie these critical qualities and that disruption of these biogeomorphic feedbacks can switch these systems from carbon sinks into sources. ADVANCES A key advancement in understanding wetland functioning has been the recognition of the role of reciprocal organism-landform interactions, “biogeomorphic feedbacks.” Biogeomorphic feedbacks entail self-reinforcing interactions between biota and geomorphology, by which organisms—often vegetation—engineer landforms to their own benefit following a positive density-dependent relationship. Vegetation that dominates major carbon-storing wetlands generate self-facilitating feedbacks that shape the landscape and amplify carbon sequestration and storage. As a result, per unit area, wetland carbon stocks and sequestration rates greatly exceed those of terrestrial forests and oceans, ecosystems that worldwide harbor large stocks because of their largemore »areal extent. Worldwide biogeomorphic wetlands experience human-induced average annual loss rates of around 1%. We estimate that associated carbon losses amount to 0.5 Pg C per year, levels that are equivalent to 5% of the estimated overall anthropogenic carbon emissions. Because carbon emissions from degraded wetlands are often sustained for centuries until all organic matter has been decomposed, conserving and restoring biogeomorphic wetlands must be part of global climate solutions. OUTLOOK Our work highlights that biogeomorphic wetlands serve as the world’s biotic carbon hotspots, and that conservation and restoration of these hotspots offer an attractive contribution to mitigate global warming. Recent scientific findings show that restoration methods aimed at reestablishing biogeomorphic feedbacks can greatly increase establishment success and restoration yields, paving the way for large-scale restoration actions. Therefore, we argue that implementing such measures can facilitate humanity in its pursuit of targets set by the Paris Agreement and the United Nations Decade on Ecosystem Restoration. Carbon storage in biogeomorphic wetlands. Organic carbon ( A ) stocks, ( B ) densities, and ( C ) sequestration rates in the world’s major carbon-storing ecosystems. Oceans hold the largest stock, peatlands (boreal, temperate, and tropical aggregated) store the largest amount per unit area, and coastal ecosystems (mangroves, salt marshes, and seagrasses aggregated) support the highest sequestration rates. ( D and E ) Biogeomorphic feedbacks, indicated with arrows, can be classified as productivity stimulating or decomposition limiting. Productivity-stimulating feedbacks increase resource availability and thus stimulate vegetation growth and organic matter production. Although production is lower in wetlands with decomposition-limiting feedbacks, decomposition is more strongly limited, resulting in net accumulation of organic matter. (D) In fens, organic matter accumulation from vascular plants is amplified by productivity-stimulating feedbacks. Once the peat rises above the groundwater and is large enough to remain waterlogged by retaining rainwater, the resulting bog maintains being waterlogged and acidic, resulting in strong decomposition-limiting feedbacks. (E) Vegetated coastal ecosystems generate productivity-stimulating feedbacks that enhance local production and trapping of external organic matter.« less
    Free, publicly-accessible full text available May 6, 2023
  2. Abstract Invasive consumers can cause extensive ecological damage to native communities but effects on ecosystem resilience are less understood. Here, we use drone surveys, manipulative experiments, and mathematical models to show how feral hogs reduce resilience in southeastern US salt marshes by dismantling an essential marsh cordgrass-ribbed mussel mutualism. Mussels usually double plant growth and enhance marsh resilience to extreme drought but, when hogs invade, switch from being essential for plant survival to a liability; hogs selectively forage in mussel-rich areas leading to a 50% reduction in plant biomass and slower post-drought recovery rate. Hogs increase habitat fragmentation across landscapes by maintaining large, disturbed areas through trampling of cordgrass during targeted mussel consumption. Experiments and climate-disturbance recovery models show trampling alone slows marsh recovery by 3x while focused mussel predation creates marshes that may never recover from large-scale disturbances without hog eradication. Our work highlights that an invasive consumer can reshape ecosystems not just via competition and predation, but by disrupting key, positive species interactions that underlie resilience to climatic disturbances.
  3. Abstract. There is an increasing demand for the creation and restoration of tidal marshes around the world, as they provide highly valued ecosystem services. Yet restored tidal marshes are strongly vulnerable to factors such as sea level rise and declining sediment supply. How fast the restored ecosystemdevelops, how resilient it is to sea level rise, and how this can be steered by restoration design are key questions that are typically challenging to assess due to the complex biogeomorphic feedback processes involved. In this paper, we apply a biogeomorphic model to a specific tidal-marsh restoration project planned by dike breaching. Our modeling approach integrates tidal hydrodynamics, sediment transport, and vegetation dynamics, accounting for relevant fine-scale flow–vegetation interactions (less than 1 m2) and their impact on vegetation and landform development at the landscape scale (several km2) and in the long term (several decades). Our model performance is positively evaluated against observations of vegetation and geomorphic development in adjacent tidal marshes. Model scenarios demonstrate that the restored tidal marsh can keep pace with realistic rates of sea level rise and that its resilience is more sensitive to the availability of suspended sediments than to the rate of sea level rise. We further demonstrate that restorationmore »design options can steer marsh resilience, as they affect the rates and spatial patterns of biogeomorphic development. By varying the width of two dike breaches, which serve as tidal inlets to the restored marsh, we show that a larger difference in the width of the two inlets leads to higher biogeomorphic diversity in restored habitats. This study showcases that biogeomorphic modeling can support management choices in restoration design to optimize tidal-marsh development towards sustainable restoration goals.« less