skip to main content


Search for: All records

Creators/Authors contains: "Champion, D. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    PSR J1757−1854 is one of the most relativistic double neutron star binary systems known in our Galaxy, with an orbital period of $P_\text{b}=4.4\, \text{h}$ and an orbital eccentricity of e = 0.61. As such, it has promised to be an outstanding laboratory for conducting tests of relativistic gravity. We present the results of a 6-yr campaign with the 100-m Green Bank and 64-m Parkes radio telescopes, designed to capitalize on this potential. We identify secular changes in the profile morphology and polarization of PSR J1757−1854, confirming the presence of geodetic precession and allowing the constraint of viewing geometry solutions consistent with General Relativity. We also update PSR J1757−1854’s timing, including new constraints of the pulsar’s proper motion, post-Keplerian parameters, and component masses. We conclude that the radiative test of gravity provided by PSR J1757−1854 is fundamentally limited to a precision of 0.3 per cent due to the pulsar’s unknown distance. A search for pulsations from the companion neutron star is also described, with negative results. We provide an updated evaluation of the system’s evolutionary history, finding strong support for a large kick velocity of $w\ge 280\, \rm{km\,s}^{-1}$ following the second progenitor supernova. Finally, we reassess PSR J1757−1854’s potential to provide new relativistic tests of gravity. We conclude that a 3-σ constraint of the change in the projected semimajor axis ($\dot{x}$) associated with Lense–Thirring precession is expected no earlier than 2031. Meanwhile, we anticipate a 3-σ measurement of the relativistic orbital deformation parameter δθ as soon as 2026.

     
    more » « less
  2. ABSTRACT

    Galactic plane radio surveys play a key role in improving our understanding of a wide range of astrophysical phenomena. Performing such a survey using the latest interferometric telescopes produces large data rates necessitating a shift towards fully or quasi-real-time data analysis with data being stored for only the time required to process them. We present here the overview and set-up for the 3000-h Max-Planck-Institut für Radioastronomie (MPIfR)–MeerKAT Galactic Plane Survey (MMGPS). The survey is unique by operating in a commensal mode, addressing key science objectives of the survey including the discovery of new pulsars and transients and studies of Galactic magnetism, the interstellar medium and star formation rates. We explain the strategy coupled with the necessary hardware and software infrastructure needed for data reduction in the imaging, spectral, and time domains. We have so far discovered 78 new pulsars including 17 confirmed binary systems of which two are potential double neutron star systems. We have also developed an imaging pipeline sensitive to the order of a few tens of micro-Jansky ($\mu{\rm Jy}$) with a spatial resolution of a few arcseconds. Further science operations with an in-house built S-band receiver operating between 1.7 and 3.5 GHz are about to commence. Early spectral line commissioning observations conducted at S-band, targeting transitions of the key molecular gas tracer CH at 3.3 GHz already illustrate the spectroscopic capabilities of this instrument. These results lay a strong foundation for future surveys with telescopes like the Square Kilometre Array (SKA).

     
    more » « less
  3. ABSTRACT

    The most massive globular cluster in our Galaxy, Omega Centauri, is an interesting target for pulsar searches, because of its multiple stellar populations and the intriguing possibility that it was once the nucleus of a galaxy that was absorbed into the Milky Way. The recent discoveries of pulsars in this globular cluster and their association with known X-ray sources was a hint that, given the large number of known X-ray sources, there is a much larger undiscovered pulsar population. We used the superior sensitivity of the MeerKAT radio telescope to search for pulsars in Omega Centauri. In this paper, we present some of the first results of this survey, including the discovery of 13 new pulsars; the total number of known pulsars in this cluster currently stands at 18. At least half of them are in binary systems and preliminary orbital constraints suggest that most of the binaries have light companions. We also discuss the ratio between isolated and binaries pulsars, and how they were formed in this cluster.

     
    more » « less
  4. ABSTRACT

    More than 100 millisecond pulsars (MSPs) have been discovered in radio observations of gamma-ray sources detected by the Fermi Large Area Telescope (LAT), but hundreds of pulsar-like sources remain unidentified. Here, we present the first results from the targeted survey of Fermi-LAT sources being performed by the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed 79 sources identified as possible gamma-ray pulsar candidates by a Random Forest classification of unassociated sources from the 4FGL catalogue. Each source was observed for 10 min on two separate epochs using MeerKAT’s L-band receiver (856–1712 MHz), with typical pulsed flux density sensitivities of $\sim 100\, \mu$Jy. Nine new MSPs were discovered, eight of which are in binary systems, including two eclipsing redbacks and one system, PSR J1526−2744, that appears to have a white dwarf companion in an unusually compact 5 h orbit. We obtained phase-connected timing solutions for two of these MSPs, enabling the detection of gamma-ray pulsations in the Fermi-LAT data. A follow-up search for continuous gravitational waves from PSR J1526−2744 in Advanced LIGO data using the resulting Fermi-LAT timing ephemeris yielded no detection, but sets an upper limit on the neutron star ellipticity of 2.45 × 10−8. We also detected X-ray emission from the redback PSR J1803−6707 in data from the first eROSITA all-sky survey, likely due to emission from an intrabinary shock.

     
    more » « less
  5. ABSTRACT

    We report the phase-connected timing ephemeris, polarization pulse profiles, Faraday rotation measurements, and Rotating-Vector-Model (RVM) fitting results of 12 millisecond pulsars (MSPs) discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in the Commensal Radio Astronomy FAST survey (CRAFTS). The timing campaigns were carried out with FAST and Arecibo over 3 yr. 11 of the 12 pulsars are in neutron star–white dwarf binary systems, with orbital periods between 2.4 and 100 d. 10 of them have spin periods, companion masses, and orbital eccentricities that are consistent with the theoretical expectations for MSP–Helium white dwarf (He WD) systems. The last binary pulsar (PSR J1912−0952) has a significantly smaller spin frequency and a smaller companion mass, the latter could be caused by a low orbital inclination for the system. Its orbital period of 29 d is well within the range of orbital periods where some MSP–He WD systems have shown anomalous eccentricities, however, the eccentricity of PSR J1912−0952 is typical of what one finds for the remaining MSP–He WD systems.

     
    more » « less
  6. ABSTRACT

    We searched for an isotropic stochastic gravitational wave background in the second data release of the International Pulsar Timing Array, a global collaboration synthesizing decadal-length pulsar-timing campaigns in North America, Europe, and Australia. In our reference search for a power-law strain spectrum of the form $h_c = A(f/1\, \mathrm{yr}^{-1})^{\alpha }$, we found strong evidence for a spectrally similar low-frequency stochastic process of amplitude $A = 3.8^{+6.3}_{-2.5}\times 10^{-15}$ and spectral index α = −0.5 ± 0.5, where the uncertainties represent 95 per cent credible regions, using information from the auto- and cross-correlation terms between the pulsars in the array. For a spectral index of α = −2/3, as expected from a population of inspiralling supermassive black hole binaries, the recovered amplitude is $A = 2.8^{+1.2}_{-0.8}\times 10^{-15}$. None the less, no significant evidence of the Hellings–Downs correlations that would indicate a gravitational-wave origin was found. We also analysed the constituent data from the individual pulsar timing arrays in a consistent way, and clearly demonstrate that the combined international data set is more sensitive. Furthermore, we demonstrate that this combined data set produces comparable constraints to recent single-array data sets which have more data than the constituent parts of the combination. Future international data releases will deliver increased sensitivity to gravitational wave radiation, and significantly increase the detection probability.

     
    more » « less
  7. ABSTRACT

    Using the MeerKAT radio telescope, a series of observations have been conducted to time the known pulsars and search for new pulsars in the globular cluster NGC 6440. As a result, two pulsars have been discovered, NGC 6440G and NGC 6440H, one of which is isolated and the other a non-eclipsing (at frequencies above 962 MHz) ‘Black Widow’, with a very low mass companion (Mc > 0.006 M⊙). It joins the other binary pulsars discovered so far in this cluster that all have low companion masses (Mc < 0.30 M⊙). We present the results of long-term timing solutions obtained using data from both Green Bank and MeerKAT telescopes for these two new pulsars and an analysis of the pulsars NGC 6440C and NGC 6440D. For the isolated pulsar NGC 6440C, we searched for planets using a Markov chain Monte Carlo technique. We find evidence for significant unmodelled variations but they cannot be well modelled as planets nor as part of a power-law red-noise process. Studies of the eclipses of the ‘Redback’ pulsar NGC 6440D at two different frequency bands reveal a frequency dependence with longer and asymmetric eclipses at lower frequencies (962–1283 MHz).

     
    more » « less
  8. ABSTRACT

    In this paper, we describe the International Pulsar Timing Array second data release, which includes recent pulsar timing data obtained by three regional consortia: the European Pulsar Timing Array, the North American Nanohertz Observatory for Gravitational Waves, and the Parkes Pulsar Timing Array. We analyse and where possible combine high-precision timing data for 65 millisecond pulsars which are regularly observed by these groups. A basic noise analysis, including the processes which are both correlated and uncorrelated in time, provides noise models and timing ephemerides for the pulsars. We find that the timing precisions of pulsars are generally improved compared to the previous data release, mainly due to the addition of new data in the combination. The main purpose of this work is to create the most up-to-date IPTA data release. These data are publicly available for searches for low-frequency gravitational waves and other pulsar science.

     
    more » « less