skip to main content


Search for: All records

Creators/Authors contains: "Connor, Thomas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    With two central galaxies engaged in a major merger and a remarkable chain of 19 young stellar superclusters wound around them in projection, the galaxy cluster SDSS J1531+3414 (z= 0.335) offers an excellent laboratory to study the interplay between mergers, active galactic nucleus (AGN) feedback, and star formation. New Chandra X-ray imaging reveals rapidly cooling hot (T∼ 106K) intracluster gas, with two “wings” forming a concave density discontinuity near the edge of the cool core. LOFAR 144 MHz observations uncover diffuse radio emission strikingly aligned with the “wings,” suggesting that the “wings” are actually the opening to a giant X-ray supercavity. The steep radio emission is likely an ancient relic of one of the most energetic AGN outbursts observed, with 4pV> 1061erg. To the north of the supercavity, GMOS detects warm (T∼ 104K) ionized gas that enshrouds the stellar superclusters but is redshifted up to +800 km s−1with respect to the southern central galaxy. The Atacama Large Millimeter/submillimeter Array detects a similarly redshifted ∼1010Mreservoir of cold (T∼ 102K) molecular gas, but it is offset from the young stars by ∼1–3 kpc. We propose that the multiphase gas originated from low-entropy gas entrained by the X-ray supercavity, attribute the offset between the young stars and the molecular gas to turbulent intracluster gas motions, and suggest that tidal interactions stimulated the “beads-on-a-string” star formation morphology.

     
    more » « less
  2. Abstract

    We present thez≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz≈ 5.7–6.2, with −28 ≲M1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez≈ 6 QLF over −28 ≲M1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z) ∝ 10k(z−6);k= −0.7), we use a maximum likelihood method to model our data. We find a break magnitude ofM*=26.380.60+0.79mag, a faint-end slope ofα=1.700.19+0.29, and a steep bright-end slope ofβ=3.841.21+0.63. Based on our new QLF model, we determine the quasar comoving spatial density atz≈ 6 to ben(M1450<26)=1.160.12+0.13cGpc3. In comparison with the literature, we find the quasar density to evolve with a constant value ofk≈ −0.7, fromz≈ 7 toz≈ 4. Additionally, we derive an ionizing emissivity ofϵ912(z=6)=7.231.02+1.65×1022ergs1Hz1cMpc3, based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz≈ 6, we calculate an Hiphotoionizing rate of ΓH I(z= 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization.

     
    more » « less
  3. Abstract

    The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70Myr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities.

     
    more » « less
  4. Abstract We present multiwavelength high-spatial resolution (∼0.″1, 70 pc) observations of UGC 4211 at z = 0.03474, a late-stage major galaxy merger at the closest nuclear separation yet found in near-IR imaging (0.″32, ∼230 pc projected separation). Using Hubble Space Telescope/Space Telescope Imaging Spectrograph, Very Large Telescope/MUSE+AO, Keck/OSIRIS+AO spectroscopy, and the Atacama Large Millimeter/submillimeter Array (ALMA) observations, we show that the spatial distribution, optical and near-infrared emission lines, and millimeter continuum emission are all consistent with both nuclei being powered by accreting supermassive black holes (SMBHs). Our data, combined with common black hole mass prescriptions, suggest that both SMBHs have similar masses, log M BH / M ⊙ ∼ 8.1 (south) and log M BH / M ⊙ ∼ 8.3 (north), respectively. The projected separation of 230 pc (∼6× the black hole sphere of influence) represents the closest-separation dual active galactic nuclei (AGN) studied to date with multiwavelength resolved spectroscopy and shows the potential of nuclear (<50 pc) continuum observations with ALMA to discover hidden growing SMBH pairs. While the exact occurrence rate of close-separation dual AGN is not yet known, it may be surprisingly high, given that UGC 4211 was found within a small, volume-limited sample of nearby hard X-ray detected AGN. Observations of dual SMBH binaries in the subkiloparsec regime at the final stages of dynamical friction provide important constraints for future gravitational wave observatories. 
    more » « less
  5. null (Ed.)
    ABSTRACT We present an analysis of the intracluster light (ICL) in the Frontier Field Cluster MACS J1149.5+2223 (z = 0.544), which combines new and archival Hubble WFC3/IR imaging to provide continuous radial coverage out to 2.8 Mpc from the brightest cluster galaxy (BCG). Employing careful treatment of potential systematic biases and using data at the largest radii to determine the background sky level, we reconstruct the surface brightness profile out to a radius of 2 Mpc. This radius is the largest to which the ICL has been measured for an individual cluster. Within this radius, we measure a total luminosity of 1.5 × 1013 L⊙ for the BCG plus ICL. From the profile and its logarithmic slope, we identify the transition from the BCG to ICL at r ∼ 70 kpc. Remarkably, we also detect an apparent inflection in the profile centred in the 1.2–1.7 Mpc (0.37–0.52 r200m) radial bin, a signature of an infall caustic in the stellar distribution. Based upon the shape and strength of the feature, we interpret it as potentially being at the splashback radius, although the radius is smaller than theoretical predictions. If this is the splashback radius, then it is the first such detection in the ICL and the first detection of the splashback radius for an individual cluster. Similar analyses should be possible with the other Frontier Field clusters, and eventually with clusters observed by the Euclid and Roman missions. 
    more » « less
  6. Abstract Studies of rest-frame optical emission in quasars at z > 6 have historically been limited by the wavelengths accessible by ground-based telescopes. The James Webb Space Telescope (JWST) now offers the opportunity to probe this emission deep into the reionization epoch. We report the observations of eight quasars at z > 6.5 using the JWST/NIRCam Wide Field Slitless Spectroscopy as a part of the “A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE)” program. Our JWST spectra cover the quasars’ emission between rest frame ∼4100 and 5100 Å. The profiles of these quasars’ broad H β emission lines span a full width at half maximum from 3000 to 6000 km s −1 . The H β -based virial black hole (BH) masses, ranging from 0.6 to 2.1 billion solar masses, are generally consistent with their Mg ii -based BH masses. The new measurements based on the more reliable H β tracer thus confirm the existence of a billion solar-mass BHs in the reionization epoch. In the observed [O iii ] λ λ 4960,5008 doublets of these luminous quasars, broad components are more common than narrow core components (≤ 1200 km s −1 ), and only one quasar shows stronger narrow components than broad. Two quasars exhibit significantly broad and blueshifted [O iii ] emission, thought to trace galactic-scale outflows, with median velocities of −610 and −1430 km s −1 relative to the [C ii ] 158 μ m line. All eight quasars show strong optical Fe ii emission and follow the eigenvector 1 relations defined by low-redshift quasars. The entire ASPIRE program will eventually cover 25 quasars and provide a statistical sample for the studies of the BHs and quasar spectral properties. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  7. Abstract We present the first results from the JWST program A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE). This program represents an imaging and spectroscopic survey of 25 reionization-era quasars and their environments by utilizing the unprecedented capabilities of NIRCam Wide Field Slitless Spectroscopy (WFSS) mode. ASPIRE will deliver the largest ( ∼ 280 arcmin 2 ) galaxy redshift survey at 3–4 μ m among JWST Cycle 1 programs and provide extensive legacy values for studying the formation of the earliest supermassive black holes, the assembly of galaxies, early metal enrichment, and cosmic reionization. In this first ASPIRE paper, we report the discovery of a filamentary structure traced by the luminous quasar J0305–3150 and 10 [O iii ] emitters at z = 6.6. This structure has a 3D galaxy overdensity of δ gal = 12.6 over 637 cMpc 3 , one of the most overdense structures known in the early universe, and could eventually evolve into a massive galaxy cluster. Together with existing VLT/MUSE and ALMA observations of this field, our JWST observations reveal that J0305–3150 traces a complex environment where both UV-bright and dusty galaxies are present and indicate that the early evolution of galaxies around the quasar is not simultaneous. In addition, we discovered 31 [O iii ] emitters in this field at other redshifts, 5.3 < z < 6.7, with half of them situated at z ∼ 5.4 and 6.2. This indicates that star-forming galaxies, such as [O iii ] emitters, are generally clustered at high redshifts. These discoveries demonstrate the unparalleled redshift survey capabilities of NIRCam WFSS and the potential of the full ASPIRE survey data set. 
    more » « less
    Free, publicly-accessible full text available June 29, 2024
  8. Abstract

    For various temperate ungulate species, recent research has highlighted the potential for spring vegetation phenology (“green‐up”) to influence individual condition, with purported benefits to population productivity. However, few studies have been able to measure the benefit on vital rates directly, and fewer still have investigated the comparative influence of other phenological periods on ungulate vital rates. In this study, we tracked phenological changes throughout the duration of the growing season and examined how their timing affected the probability of pregnancy in an ungulate population. We did this for elk (Cervus canadensis) across the Greater Yellowstone Ecosystem (GYE) by sampling 1106 adult females in winter at 25 sites over a 13‐year period and assessing sources of variation in pregnancy using a Bayesian hierarchical model. Pregnancy rates were generally high across the GYE (82.4%), and the primary influences on probability of pregnancy were the timing of vegetation senescence (“brown‐down”) in autumn and exposure to the reproductive disease brucellosis. Earlier forage brown‐down in fall negatively influenced the probability of pregnancy of elk aged 6–9 years by an estimated 17.2% within the range (ca. 32 days) of observed brown‐down end dates. While summer habitat quality has been inferred to influence elk pregnancy previously, our findings specify the key influence of foraging conditions later in the seasonal cycle, immediately before the breeding season. The reproductive disease brucellosis was also an important factor, reducing the probability of pregnancy by 12.4% in elk in the 6‐ to 9‐year age class. Because pregnancy was tested before most disease‐induced abortions occur, the apparent mechanism for this effect is a prolonged reduction in fertility beyond the period of initial exposure in which fetal mortality is typically expected. Our results prompt greater scrutiny of the combined effects of late‐season phenology and disease on reproductive rates and population productivity in temperate ungulates.

     
    more » « less
  9. Synergies and trade-offs among the United Nations Sustainable Development Goals (SDGs) have been hotly debated. Although the world is increasingly metacoupled (socioeconomic-environmental interactions within and across adjacent or distant systems), there is little understanding of the impacts of globally widespread and important flows on enhancing or compromising sustainability in different systems. Here, we used a new integrated framework to guide SDG synergy and trade-off analysis within and across systems, as influenced by cross-boundary tourism and wildlife translocations. The world’s terrestrial protected areas alone receive approximately 8 billion visits per year, generating a direct economic impact of US $600 billion. Globally, more than 5000 animal species and 29,000 plant species are traded across country borders, and the wildlife trade has arguably contributed to zoonotic disease worldwide, such as the ongoing COVID-19 pandemic. We synthesized 22 cases of tourism and wildlife translocations across six continents and found 33 synergies and 14 trade-offs among 10 SDGs within focal systems and across spillover systems. Our study provides an empirical demonstration of SDG interactions across spillover systems and insights for holistic sustainability governance, contributing to fostering synergies and reducing trade-offs to achieve global sustainable development in the metacoupled Anthropocene. 
    more » « less
  10. ABSTRACT

    We investigate the strong-lensing cluster Abell 370 (A370) using a wide Integral Field Unit (IFU) spectroscopic mosaic from the Multi-Unit Spectroscopic Explorer (MUSE). IFU spectroscopy provides significant insight into the structure and mass content of galaxy clusters, yet IFU-based cluster studies focus almost exclusively on the central Einstein-radius region. Covering over 14 arcmin2, the new MUSE mosaic extends significantly beyond the A370 Einstein radius, providing, for the first time, a detailed look at the cluster outskirts. Combining these data with wide-field, multi-band Hubble Space Telescope (HST) imaging from the BUFFALO project, we analyse the distribution of objects within the cluster and along the line of sight. Identifying 416 cluster galaxies, we use kinematics to trace the radial mass profile of the halo, providing a mass estimate independent from the lens model. We also measure radially averaged properties of the cluster members, tracking their evolution as a function of infall. Thanks to the high spatial resolution of our data, we identify six cluster members acting as galaxy–galaxy lenses, which constrain localized mass distributions beyond the Einstein radius. Finally, taking advantage of MUSE’s 3D capabilities, we detect and analyse multiple spatially extended overdensities outside of the cluster that influence lensing-derived halo mass estimates. We stress that much of this work is only possible thanks to the robust, extended IFU coverage, highlighting its importance even in less optically dense cluster regions. Overall, this work showcases the power of combining HST + MUSE, and serves as the initial step towards a larger and wider program targeting several clusters.

     
    more » « less