skip to main content


Search for: All records

Creators/Authors contains: "Gerasimov, Roman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color.

     
    more » « less
  2. Abstract

    We present spectroscopic confirmation of a nearby L dwarf pair, CWISE J061741.79+194512.8AB. Keck/NIRES near-infrared spectroscopy shows that the pair is composed of an L2 dwarf primary and an L4 dwarf secondary. High resolution spectroscopy of the combined light system with Keck/NIRSPEC yields a radial velocity of 29.2 ± 0.3 km s−1and a projected rotational velocityvsini=41.62.6+2.7km s−1. Our spectrophotometric distance estimate places the system at 28.2 ± 5.7 pc, significantly more distant than originally estimated in Kirkpatrick et al. The angular separation of the components is 1.″31 ± 0.″14, corresponding to a projected physical separation of 37 ± 8 au.

     
    more » « less
  3. Abstract

    Brown dwarfs can serve as both clocks and chemical tracers of the evolutionary history of the Milky Way due to their continuous cooling and high sensitivity of spectra to composition. We focus on brown dwarfs in globular clusters that host some of the oldest coeval populations in the galaxy. Currently, no brown dwarfs in globular clusters have been confirmed, but they are expected to be uncovered with advanced observational facilities such as the James Webb Space Telescope (JWST). In this paper we present a new set of stellar models specifically designed to investigate low-mass stars and brown dwarfs inωCentauri—the largest known globular cluster. The parameters of our models were derived from iterative fits to Hubble Space Telescope photometry of the main-sequence members of the cluster. Despite the complex distribution of abundances and the presence of multiple main sequences inωCentauri, we find that the modal color–magnitude distribution can be represented by a single stellar population with parameters determined in this study. The observed luminosity function is well represented by two distinct stellar populations having solar and enhanced helium mass fractions and a common initial mass function, in agreement with previous studies. Our analysis confirms that the abundances of individual chemical elements play a key role in determining the physical properties of low-mass cluster members. We use our models to draw predictions of brown dwarf colors and magnitudes in anticipated JWST NIRCam data, confirming that the beginning of the substellar sequence should be detected inωCentauri in forthcoming observations.

     
    more » « less
  4. null (Ed.)
  5. Abstract Through the Backyard Worlds: Planet 9 citizen science project we discovered a late-type L dwarf co-moving with the young K0 star BD+60 1417 at a projected separation of 37″ or 1662 au. The secondary—CWISER J124332.12+600126.2 (W1243)—is detected in both the CatWISE2020 and 2MASS reject tables. The photometric distance and CatWISE proper motion both match that of the primary within ∼1 σ and our estimates for a chance alignment yield a zero probability. Follow-up near-infrared spectroscopy reveals W1243 to be a very red 2MASS ( J – K s = 2.72), low surface gravity source that we classify as L6–L8 γ . Its spectral morphology strongly resembles that of confirmed late-type L dwarfs in 10–150 Myr moving groups as well as that of planetary mass companions. The position on near- and mid-infrared color–magnitude diagrams indicates the source is redder and fainter than the field sequence, a telltale sign of an object with thick clouds and a complex atmosphere. For the primary we obtained new optical spectroscopy and analyzed all available literature information for youth indicators. We conclude that the Li i abundance, its loci on color–magnitude and color–color diagrams, and the rotation rate revealed in multiple TESS sectors are all consistent with an age of 50–150 Myr. Using our re-evaluated age of the primary and the Gaia parallax, along with the photometry and spectrum for W1243, we find T eff = 1303 ± 31 K, log g = 4.3 ± 0.17 cm s −2 , and a mass of 15 ± 5 M Jup . We find a physical separation of ∼1662 au and a mass ratio of ∼0.01 for this system. Placing it in the context of the diverse collection of binary stars, brown dwarfs, and planetary companions, the BD+60 1417 system falls in a sparsely sampled area where the formation pathway is difficult to assess. 
    more » « less
  6. Abstract We present photometric and spectroscopic observations of Supernova 2020oi (SN 2020oi), a nearby (∼17 Mpc) type-Ic supernova (SN Ic) within the grand-design spiral M100. We undertake a comprehensive analysis to characterize the evolution of SN 2020oi and constrain its progenitor system. We detect flux in excess of the fireball rise model δ t ≈ 2.5 days from the date of explosion in multiband optical and UV photometry from the Las Cumbres Observatory and the Neil Gehrels Swift Observatory, respectively. The derived SN bolometric luminosity is consistent with an explosion with M ej = 0.81 ± 0.03 M ⊙ , E k = 0.79 ± 0.09 × 10 51 erg s −1 , and M Ni56 = 0.08 ± 0.02 M ⊙ . Inspection of the event’s decline reveals the highest Δ m 15,bol reported for a stripped-envelope event to date. Modeling of optical spectra near event peak indicates a partially mixed ejecta comparable in composition to the ejecta observed in SN 1994I, while the earliest spectrum shows signatures of a possible interaction with material of a distinct composition surrounding the SN progenitor. Further, Hubble Space Telescope pre-explosion imaging reveals a stellar cluster coincident with the event. From the cluster photometry, we derive the mass and age of the SN progenitor using stellar evolution models implemented in the BPASS library. Our results indicate that SN 2020oi occurred in a binary system from a progenitor of mass M ZAMS ≈ 9.5 ± 1.0 M ⊙ , corresponding to an age of 27 ± 7 Myr. SN 2020oi is the dimmest SN Ic event to date for which an early-time flux excess has been observed, and the first in which an early excess is unlikely to be associated with shock cooling. 
    more » « less
  7. null (Ed.)
  8. Abstract

    Observing in six frequency bands from 27 to 280 GHz over a large sky area, the Simons Observatory (SO) is poised to address many questions in Galactic astrophysics in addition to its principal cosmological goals. In this work, we provide quantitative forecasts on astrophysical parameters of interest for a range of Galactic science cases. We find that SO can: constrain the frequency spectrum of polarized dust emission at a level of Δβd≲ 0.01 and thus test models of dust composition that predict thatβdin polarization differs from that measured in total intensity; measure the correlation coefficient between polarized dust and synchrotron emission with a factor of two greater precision than current constraints; exclude the nonexistence of exo-Oort clouds at roughly 2.9σif the true fraction is similar to the detection rate of giant planets; map more than 850 molecular clouds with at least 50 independent polarization measurements at 1 pc resolution; detect or place upper limits on the polarization fractions of CO(2–1) emission and anomalous microwave emission at the 0.1% level in select regions; and measure the correlation coefficient between optical starlight polarization and microwave polarized dust emission in 1° patches for all lines of sight withNH≳ 2 × 1020cm−2. The goals and forecasts outlined here provide a roadmap for other microwave polarization experiments to expand their scientific scope via Milky Way astrophysics.37

    A supplement describing author contributions to this paper can be found athttps://simonsobservatory.org/wp-content/uploads/2022/02/SO_GS_Contributions.pdf.

     
    more » « less
  9. null (Ed.)