skip to main content


Search for: All records

Creators/Authors contains: "Gottlieb, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Melenk, J.M. ; Perugia, I. ; Schöberl, J. ; Schwab, C. (Ed.)
  2. We investigate the state-of-the-art Lanczos eigensolvers available in the Grid and QUDA libraries. They include Implicitly Restarted Lanczos, Thick-Restart Lanczos, and Block Lanczos. We measure and analyze their performance for the Highly Improved Staggered Quark (HISQ) Dirac operator. We also discuss optimization of Chebyshev acceleration. 
    more » « less
  3. Abstract

    We present the first unquenched lattice-QCD calculation of the form factors for the decay$$B\rightarrow D^*\ell \nu $$BDνat nonzero recoil. Our analysis includes 15 MILC ensembles with$$N_f=2+1$$Nf=2+1flavors of asqtad sea quarks, with a strange quark mass close to its physical mass. The lattice spacings range from$$a\approx 0.15$$a0.15fm down to 0.045 fm, while the ratio between the light- and the strange-quark masses ranges from 0.05 to 0.4. The valencebandcquarks are treated using the Wilson-clover action with the Fermilab interpretation, whereas the light sector employs asqtad staggered fermions. We extrapolate our results to the physical point in the continuum limit using rooted staggered heavy-light meson chiral perturbation theory. Then we apply a model-independent parametrization to extend the form factors to the full kinematic range. With this parametrization we perform a joint lattice-QCD/experiment fit using several experimental datasets to determine the CKM matrix element$$|V_{cb}|$$|Vcb|. We obtain$$\left| V_{cb}\right| = (38.40 \pm 0.68_{\text {th}} \pm 0.34_{\text {exp}} \pm 0.18_{\text {EM}})\times 10^{-3}$$Vcb=(38.40±0.68th±0.34exp±0.18EM)×10-3. The first error is theoretical, the second comes from experiment and the last one includes electromagnetic and electroweak uncertainties, with an overall$$\chi ^2\text {/dof} = 126/84$$χ2/dof=126/84, which illustrates the tensions between the experimental data sets, and between theory and experiment. This result is in agreement with previous exclusive determinations, but the tension with the inclusive determination remains. Finally, we integrate the differential decay rate obtained solely from lattice data to predict$$R(D^*) = 0.265 \pm 0.013$$R(D)=0.265±0.013, which confirms the current tension between theory and experiment.

     
    more » « less
  4. Abstract In this work, we investigated atmospheric pressure plasma jet (APPJ)-assisted methane oxidation over a Ni-SiO 2 /Al 2 O 3 catalyst. We evaluated possible reaction mechanisms by analyzing the correlation of gas phase, surface and plasma-produced species. Plasma feed gas compositions, plasma powers, and catalyst temperatures were varied to expand the experimental parameters. Real-time Fourier-transform infrared spectroscopy was applied to quantify gas phase species from the reactions. The reactive incident fluxes generated by plasma were measured by molecular beam mass spectroscopy using an identical APPJ operating at the same conditions. A strong correlation of the quantified fluxes of plasma-produced atomic oxygen with that of CH 4 consumption, and CO and CO 2 formation implies that O atoms play an essential role in CH 4 oxidation for the investigated conditions. With the integration of APPJ, the apparent activation energy was lowered and a synergistic effect of 30% was observed. We also performed in-situ diffuse reflectance infrared Fourier-transform spectroscopy to analyze the catalyst surface. The surface analysis showed that surface CO abundance mirrored the surface coverage of CH n at 25 °C. This suggests that CH n adsorbed on the catalyst surface as an intermediate species that was subsequently transformed into surface CO. We observed very little surface CH n absorbance at 500 °C, while a ten-fold increase of surface CO and stronger CO 2 absorption were seen. This indicates that for a nickel catalyst at 500 °C, the dissociation of CH 4 to CH n may be the rate-determining step in the plasma-assisted CH 4 oxidation for our conditions. We also found the CO vibrational frequency changes from 2143 cm −1 for gas phase CO to 2196 cm −1 for CO on a 25 °C catalyst surface, whereas the frequency of CO on a 500 °C catalyst was 2188 cm −1 . The change in CO vibrational frequency may be related to the oxidation of the catalyst. 
    more » « less
  5. We report (a) the deep modification of polymers by long‐lived reactive species generated in atmospheric pressure plasma and (b) the dependence of plasma–polymer interaction on the macromolecular structure. Styrene‐based polymers show significant thickness expansion whereas polymers with methyl, alcohol, and ether side groups show low‐rate etching. The characterization of polystyrene (PS) by X‐ray photoelectron spectroscopy and attenuated total reflectance–Fourier transform infrared shows that plasma treatment destroys aromatic rings and produces ether, ester, and surface organic nitrate groups. These modifications can happen at tens of nanometers below the surface, which we attribute to the reaction–diffusion of plasma species. Comparing three styrene‐based polymers namely PS, poly(4‐methyl styrene), and poly(α‐methyl styrene), we find that long‐lived species primarily attack the C–H bond on the carbon site where the aromatic ring connects.

     
    more » « less
  6. We describe a recent lattice-QCD calculation of the leptonic decay con- stants of heavy-light pseudoscalar mesons containing charm and bottom quarks and of the masses of the up, down, strange, charm, and bottom quarks. Results for these quantities are of the highest precision to date. Calculations use 24 isospin-symmetric ensembles of gauge-field configura- tions with six different lattice spacings as small as approximately 0.03 fm and several values of the light quark masses down to physical values of the average up- and down-sea-quark masses. We use the highly-improved staggered quark (HISQ) formulation for valence and sea quarks, includ- ing the bottom quark. The analysis employs heavy-quark effective theory (HQET). A novel HQET method is used in the determination of the quark masses. 
    more » « less
  7. Abstract

    Thin layers of polypropylene (PP) have been treated by argon low‐temperature plasmas in an inductively coupled plasma setup. The etched thickness of PP was monitored in situ by means of single‐wavelength ellipsometry. The ellipsometric model of the polymer surface exposed to plasma consists of a UV‐modified layer, a dense amorphous carbon layer because of ion bombardment, and an effective medium approximation layer, which accounts for moderate surface roughness. The etching behavior has been compared to a model based on argon ion beam irradiation experiments. In this approach, surface processes are described in terms of etching yields and crosslinking probabilities as a function of incident fluxes and energies of Ar ions and UV photons. The ion beam model fits well with the plasma etching results.

     
    more » « less