skip to main content


Search for: All records

Creators/Authors contains: "Kumaran, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$±1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$νe,νμ,ντ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$109-1015cm-2GW-1have been obtained in the 0.5–5 MeV neutrino energy range.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. null (Ed.)
    Living organisms need energy to stay alive; in cells, this energy is supplied in the form of a small molecule called adenosine triphosphate, or ATP, a nucleotide that stores energy in the bonds between its three phosphate groups. ATP is present in all living cells and is often referred to as the energy currency of the cell, because it can be easily stored and transported to where it is needed. However, it is unknown why cells rely so heavily on ATP when a highly similar nucleotide called guanosine triphosphate, or GTP, could also act as an energy currency. There are several examples of proteins that originally used GTP and have since evolved to use ATP, but it is not clear why this switch occurred. One suggestion is that ATP is the more readily available nucleotide in the cell. To test this hypothesis, Updegrove, Harke et al. studied a protein that helps bacteria transition into spores, which are hardier and can survive in extreme environments until conditions become favorable for bacteria to grow again. In modern bacteria, this protein uses ATP to provide energy, but it evolved from an ancestral protein that used GTP instead. First, Updegrove, Harke et al. engineered the protein so that it became more similar to the ancestral protein and used GTP instead of ATP. When this was done, the protein gained the ability to break down GTP and release energy from it, but it no longer performed its enzymatic function. This suggests that both the energy released and the source of that energy are important for a protein’s activity. Further analysis showed that the modern version of the protein has evolved to briefly hold on to ATP after releasing its energy, which did not happen with GTP in the modified protein. Updegrove, Harke et al. also discovered that the levels of GTP in a bacterial cell fall as it transforms into a spore, while ATP levels remain relatively high. This suggests that ATP may indeed have become the source of energy of choice because it was more available. These findings provide insights into how ATP became the energy currency in cells, and suggest that how ATP is bound by proteins can impact a protein’s activity. Additionally, these experiments could help inform the development of drugs targeting proteins that bind nucleotides: it may be essential to consider the entirety of the binding event, and not just the release of energy. 
    more » « less
  4. Abstract The search for neutrino events in correlation with 42 most intense fast radio bursts (FRBs) has been performed using the Borexino dataset from 05/2007 to 06/2021. We have searched for signals with visible energies above 250 keV within a time window of $$\pm \, 1000$$ ± 1000  s corresponding to detection time of a particular FRB. We also applied an alternative approach based on searching for specific shapes of neutrino-electron scattering spectra in the full exposure data of the Borexino detector. In particular, two incoming neutrino spectra were considered: the monoenergetic line and the spectrum expected from supernovae. The same spectra were considered for electron antineutrinos detected through inverse beta-decay reaction. No statistically significant excess over the background was observed. As a result, the strongest upper limits on FRB-associated neutrino fluences of all flavors have been obtained in the 0.5–50 MeV neutrino energy range. 
    more » « less
  5. Abstract Cosmogenic radio-nuclei are an important source of background for low-energy neutrino experiments. In Borexino, cosmogenic $$^{11}$$ 11 C decays outnumber solar pep and CNO neutrino events by about ten to one. In order to extract the flux of these two neutrino species, a highly efficient identification of this background is mandatory. We present here the details of the most consolidated strategy, used throughout Borexino solar neutrino measurements. It hinges upon finding the space-time correlations between $$^{11}$$ 11 C decays, the preceding parent muons and the accompanying neutrons. This article describes the working principles and evaluates the performance of this Three-Fold Coincidence (TFC) technique in its two current implementations: a hard-cut and a likelihood-based approach. Both show stable performances throughout Borexino Phases II (2012–2016) and III (2016–2020) data sets, with a $$^{11}$$ 11 C tagging efficiency of $$\sim 90$$ ∼ 90  % and $$\sim $$ ∼  63–66 % of the exposure surviving the tagging. We present also a novel technique that targets specifically $$^{11}$$ 11 C produced in high-multiplicity during major spallation events. Such $$^{11}$$ 11 C appear as a burst of events, whose space-time correlation can be exploited. Burst identification can be combined with the TFC to obtain about the same tagging efficiency of $$\sim 90\%$$ ∼ 90 % but with a higher fraction of the exposure surviving, in the range of $$\sim $$ ∼  66–68 %. 
    more » « less
  6. null (Ed.)