skip to main content


Search for: All records

Creators/Authors contains: "Lee, Wang-Chien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning to route has received significant research momentum as a new approach for the route planning problem in intelligent transportation systems. By exploring global knowledge of geographical areas and topological structures of road networks to facilitate route planning, in this work, we propose a novel Generative Adversarial Network (GAN) framework, namely Progressive Route Planning GAN (ProgRPGAN), for route planning in road networks. The novelty of ProgRPGAN lies in the following aspects: 1) we propose to plan a route with levels of increasing map resolution, starting on a low-resolution grid map, gradually refining it on higher-resolution grid maps, and eventually on the road network in order to progressively generate various realistic paths; 2) we propose to transfer parameters of the previous-level generator and discriminator to the subsequent generator and discriminator for parameter initialization in order to improve the efficiency and stability in model learning; and 3) we propose to pre-train embeddings of grid cells in grid maps and intersections in the road network by capturing the network topology and external factors to facilitate effective model learning. Empirical result shows that ProgRPGAN soundly outperforms the state-of-the-art learning to route methods, especially for long routes, by 9.46% to 13.02% in F1-measure on multiple large-scale real-world datasets. ProgRPGAN, moreover, effectively generates various realistic routes for the same query. 
    more » « less
  2. Knowing the perceived economic value of words is often desirable for applications such as product naming and pricing. However, there is a lack of understanding on the underlying economic worths of words, even though we have seen some breakthrough on learning the semantics of words. In this work, we bridge this gap by proposing a joint-task neural network model, Word Worth Model (WWM), to learn word embedding that captures the underlying economic worths. Through the design of WWM, we incorporate contextual factors, e.g., product’s brand name and restaurant’s city, that may affect the aggregated monetary value of a textual item. Via a comprehensive evaluation, we show that, compared with other baselines, WWM accurately predicts missing words when given target words. We also show that the learned embeddings of both words and contextual factors reflect well the underlying economic worths through various visualization analyses. 
    more » « less
  3. Viral marketing on social networks, also known as Influence Maximization (IM), aims to select k users for the promotion of a target item by maximizing the total spread of their influence. However, most previous works on IM do not explore the dynamic user perception of promoted items in the process. In this paper, by exploiting the knowledge graph (KG) to capture dynamic user perception, we formulate the problem of Influence Maximization based on Dynamic Personal Perception (IMDPP) that considers user preferences and social influence reflecting the impact of relevant item adoptions. We prove the hardness of IMDPP and design an approximation algorithm, named Dynamic perception for seeding in target markets (Dysim), by exploring the concepts of dynamic reachability, target markets, and substantial influence to select and promote a sequence of relevant items. We evaluate the performance of Dysim in comparison with the state-of-the-art approaches using real social networks with real KGs. The experimental results show that Dysim effectively achieves at least 6 times of influence spread in large datasets over the state-of-the-art approaches. 
    more » « less
  4. We study the problem of representation learning for multiple types of entities in a co-ordered network where order relations exist among entities of the same type, and association relations exist across entities of different types. The key challenge in learning co-ordered network embedding is to preserve order relations among entities of the same type while leveraging on the general consistency in order relations between different entity types. In this paper, we propose an embedding model, CO2Vec, that addresses this challenge using mutually reinforced order dependencies. Specifically, CO2Vec explores indirect order dependencies as supplementary evidence to enhance order representation learning across different types of entities. We conduct extensive experiments on both synthetic and real world datasets to demonstrate the robustness and effectiveness of CO2Vec against several strong baselines in link prediction task. We also design a comprehensive evaluation framework to study the performance of CO2Vec under different settings. In particular, our results show the robustness of CO2Vec with the removal of order relations from the original networks. 
    more » « less
  5. Estimating the travel time for a given path is a fundamental problem in many urban transportation systems. However, prior works fail to well capture moving behaviors embedded in paths and thus do not estimate the travel time accurately. To fill in this gap, in this work, we propose a novel neural network framework, namely Deep Image-based Spatio-Temporal network (DeepIST), for travel time estimation of a given path. The novelty of DeepIST lies in the following aspects:1) we propose to plot a path as a sequence of -generalized images"which include sub-paths along with additional information, such as traffic conditions, road network and traffic signals, in order to harness the power of convolutional neural network model (CNN)on image processing; 2) we design a novel two-dimensional CNN, namely PathCNN, to extract spatial patterns for lines in images by regularization and adopting multiple pooling methods; and 3) we apply a one-dimensional CNN to capture temporal patterns among the spatial patterns along the paths for the estimation. Empirical results show that DeepIST soundly outperforms the state-of-the-art travel time estimation models by 24.37% to 25.64% of mean absolute error (MAE) in multiple large-scale real-world datasets. 
    more » « less
  6. Citations of scientific papers and patents reveal the knowledge flow and usually serve as the metric for evaluating their novelty and impacts in the field. Citation Forecasting thus has various applications in the real world. Existing works on citation forecasting typically exploit the sequential properties of citation events, without exploring the citation network. In this paper, we propose to explore both the citation network and the related citation event sequences which provide valuable information for future citation forecasting. We propose a novel Citation Network and Event Sequence (CINES) Model to encode signals in the citation network and related citation event sequences into various types of embeddings for decoding to the arrivals of future citations. Moreover, we propose a temporal network attention and three alternative designs of bidirectional feature propagation to aggregate the retrospective and prospective aspects of publications in the citation network, coupled with the citation event sequence embeddings learned by a two-level attention mechanism for the citation forecasting. We evaluate our models and baselines on both a U.S. patent dataset and a DBLP dataset. Experimental results show that our models outperform the state-of-the-art methods, i.e., RMTPP, CYAN-RNN, Intensity-RNN, and PC-RNN, reducing the forecasting error by 37.76% - 75.32%. 
    more » « less
  7. Research suggests that social relationships have substantial impacts on individuals’ health outcomes. Network intervention, through careful planning, can assist a network of users to build healthy relationships. However, most previous work is not designed to assist such planning by carefully examining and improving multiple network characteristics. In this paper, we propose and evaluate algorithms that facilitate network intervention planning through simultaneous optimization of network degree, closeness, betweenness, and local clustering coefficient, under scenarios involving Network Intervention with Limited Degradation - for Single target (NILD-S) and Network Intervention with Limited Degradation - for Multiple targets (NILD-M). We prove that NILD-S and NILD-M are NP-hard and cannot be approximated within any ratio in polynomial time unless P=NP. We propose the Candidate Re-selection with Preserved Dependency (CRPD) algorithm for NILD-S, and the Objective-aware Intervention edge Selection and Adjustment (OISA) algorithm for NILD-M. Various pruning strategies are designed to boost the efficiency of the proposed algorithms. Extensive experiments on various real social networks collected from public schools and Web and an empirical study are conducted to show that CRPD and OISA outperform the baselines in both efficiency and effectiveness. 
    more » « less