skip to main content


Search for: All records

Creators/Authors contains: "Ma, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Permeability of binary mixtures of soils is important for several industrial and engineering applications. Previous models for predicting the permeability of a binary mixture of soils were primarily developed from Kozeny–Carman equation with an empirical approach. The permeability is predicted based on an equivalent particle size of the two species. This study is aimed to develop a model using a more fundamental approach. Instead of an equivalent particle size, the permeability is predicted based on the bimodal void sizes of the binary mixture. Because the bimodal void sizes are not available as commonly measured physical properties. We first develop an analytical method that has the capability of predicting the bimodal void sizes of a binary mixture. A permeability model is then developed based on the bimodal void sizes of the binary mixture. The developed permeability model is evaluated by comparing the predicted and experimentally measured results for binary mixtures of glass beads, crush sand, and gravel sand. The findings can contribute to a better understanding of the important influence of pore structure on the prediction of permeability. 
    more » « less
  2. Datasets involving multivariate event streams are prevalent in numerous applications. We present a novel framework for modeling temporal point processes called clock logic neural networks (CLNN) which learn weighted clock logic (wCL) formulas as interpretable temporal rules by which some events promote or inhibit other events. Specifically, CLNN models temporal relations between events using conditional intensity rates informed by a set of wCL formulas, which are more expressive than related prior work. Unlike conventional approaches of searching for generative rules through expensive combinatorial optimization, we design smooth activation functions for components of wCL formulas that enable a continuous relaxation of the discrete search space and efficient learning of wCL formulas using gradient-based methods. Experiments on synthetic datasets manifest our model's ability to recover the ground-truth rules and improve computational efficiency. In addition, experiments on real-world datasets show that our models perform competitively when compared with state-of-the-art models. 
    more » « less
  3. Abstract

    A systematic study on the biological effects of simulated microgravity (sµg) on human pluripotent stem cells (hPSC) is still lacking. Here, we used a fast-rotating 2-D clinostat to investigate the sµg effect on proliferation, self-renewal, and cell cycle regulation of hPSCs. We observed significant upregulation of protein translation of pluripotent transcription factors in hPSC cultured in sµg compared to cells cultured in 1g conditions. In addition to a significant increase in expression of telomere elongation genes. Differentiation experiments showed that hPSC cultured in sµg condition were less susceptible to differentiation compared to cells in 1g conditions. These results suggest that sµg enhances hPSC self-renewal. Our study revealed that sµg enhanced the cell proliferation of hPSCs by regulating the expression of cell cycle-associated kinases. RNA-seq analysis indicated that in sµg condition the expression of differentiation and development pathways are downregulated, while multiple components of the ubiquitin proteasome system are upregulated, contributing to an enhanced self-renewal of hPSCs. These effects of sµg were not replicated in human fibroblasts. Taken together, our results highlight pathways and mechanisms in hPSCs vulnerable to microgravity that imposes significant impacts on human health and performance, physiology, and cellular and molecular processes.

     
    more » « less
  4. We report recent single-shot spatiotemporal measurements of laser pulses, including pulse-front tilt (PFT) and spatial chirp, taken at the Compact Multipulse Terawatt laser at the Jupiter Laser Facility in Livermore, CA. STRIPED FISH, a device that measures the complete 3D electric field of fs to ps laser pulses on a single shot, was adapted to near infrared for these measurements. We present the design of the instrument used for these experiments, the on-shot measurements of systematic high-order PFT, and shot-to-shot variations in the measurements of spatiotemporal couplings. Finally, we simulate the effect of PFT in target normal sheath acceleration experiments. These simulations showed that pulse front tilt can steer hot electrons, shape the distribution of the accelerating sheath field, and increase the variability of cutoff energy in the resulting proton spectra. While these effects may be detrimental to experimental accuracy if the pulse front tilt is left unmeasured, hot electron steering shows promise for precision manipulation of the particle source for a range of applications, including irradiation of secondary targets for opacity measurements, radiography, or neutron generation.

     
    more » « less
  5. ABSTRACT

    We present a revised analysis of the photometric reverberation mapping campaign of the narrow-line Seyfert 1 galaxy PKS 0558 − 504 carried out with the Swift Observatory during 2008–2010. Previously, Gliozzi et al. (2013) found using the Discrete Correlation Function (DCF) method that the short-wavelength continuum variations lagged behind variations at longer wavelengths, the opposite of the trend expected for thermal reprocessing of X-rays by the accretion disc, and they interpreted their results as evidence against the reprocessing model. We carried out new DCF measurements that demonstrate that the inverted lag-wavelength relationship found by Gliozzi et al. resulted from their having interchanged the order of the driving and responding light curves when measuring the lags. To determine the inter-band lags and uncertainties more accurately, we carried out new measurements with four independent methods. These give consistent results showing time delays increasing as a function of wavelength, as expected for the disc reprocessing scenario. The slope of the re-analysed delay spectrum appears to be roughly compatible with the predicted τ ∝ λ4/3 relationship for reprocessing by an optically thick and geometrically thin accretion disc, although the data points exhibit a large scatter about the fitted power-law trend.

     
    more » « less