skip to main content


Search for: All records

Creators/Authors contains: "Teague, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the first detection of13CCH in a protoplanetary disk (TW Hya). Using observations of C2H, we measure CCH/13CCH = 65 ± 20 gas with a CO isotopic ratio of12CO/13CO = 21 ± 5. The TW Hya disk exhibits a gas phase C/O that exceeds unity, and C2H is the tracer of this excess carbon. We confirm that the TW Hya gaseous disk exhibits two separate carbon isotopic reservoirs, as noted previously. We explore two theoretical solutions for the development of this dichotomy. One model represents TW Hya today with a protoplanetary disk exposed to a cosmic-ray ionization rate that is below interstellar as consistent with current estimates. We find that this model does not have sufficient ionization in cold (T< 40 K) layers to activate carbon isotopic fractionation. The second model investigates a younger TW Hya protostellar disk exposed to an interstellar cosmic-ray ionization rate. We find that the younger model has sources of ionization deeper in a colder disk that generates two independent isotopic reservoirs. One reservoir is12C-enriched carried by methane/hydrocarbon ices, and the other is13C-enriched carried by gaseous CO. The former potentially provides a source of methane/hydrocarbon ices to power the chemistry that generates the anomalously strong C2H emission in this (and other) disk systems in later stages. The latter provides a source of gaseous13C-rich material to generate isotopic enrichments in forming giant planets, as recently detected in the super-Jupiter TYC 8998-760-1 b by Zhang et al.

     
    more » « less
  2. Abstract

    We present MIRI Medium-resolution Spectrograph observations of the large, multi-gapped protoplanetary disk around the T Tauri star AS 209. The observations reveal hundreds of water vapor lines from 4.9–25.5μm toward the inner ∼1 au in the disk, including the first detection of rovibrational water emission in this disk. The spectrum is dominated by hot (∼800 K) water vapor and OH gas, with only marginal detections of CO2, HCN, and a possible colder water vapor component. Using slab models with a detailed treatment of opacities and line overlap, we retrieve the column density, emitting area, and excitation temperature of water vapor and OH, and provide upper limits for the observable mass of other molecules. Compared to MIRI spectra of other T Tauri disks, the inner disk of AS 209 does not appear to be atypically depleted in CO2nor HCN. Based on Spitzer Infrared Spectrograph observations, we further find evidence for molecular emission variability over a 10 yr baseline. Water, OH, and CO2line luminosities have decreased by factors of 2–4 in the new MIRI epoch, yet there are minimal continuum emission variations. The origin of this variability is yet to be understood.

     
    more » « less
  3. Abstract

    Theoretical models and observations suggest that the abundances of molecular ions in protoplanetary disks should be highly sensitive to the variable ionization conditions set by the young central star. We present a search for temporal flux variability of HCO+J= 1–0, which was observed as a part of the Molecules with Atacama Large Millimeter/submillimeter Array (ALMA) at Planet-forming Scales ALMA Large Program. We split out and imaged the line and continuum data for each individual day the five sources were observed (HD 163296, AS 209, GM Aur, MWC 480, and IM Lup, with between three and six unique visits per source). Significant enhancement (>3σ) was not observed, but we find variations in the spectral profiles in all five disks. Variations in AS 209, GM Aur, and HD 163296 are tentatively attributed to variations in HCO+flux, while variations in IM Lup and MWC 480 are most likely introduced by differences in theuvcoverage, which impact the amount of recovered flux during imaging. The tentative detections and low degree of variability are consistent with expectations of X-ray flare-driven HCO+variability, which requires relatively large flares to enhance the HCO+rotational emission at significant (>20%) levels. These findings also demonstrate the need for dedicated monitoring campaigns with high signal-to-noise ratios to fully characterize X-ray flare-driven chemistry.

     
    more » « less
  4. Abstract

    We study the kinematics of the AS 209 disk using theJ= 2–1 transitions of12CO,13CO, and C18O. We derive the radial, azimuthal, and vertical velocity of the gas, taking into account the lowered emission surface near the annular gap at ≃1.″7 (200 au) within which a candidate circumplanetary-disk-hosting planet has been reported previously. In12CO and13CO, we find a coherent upward flow arising from the gap. The upward gas flow is as fast as 150 m s−1in the regions traced by12CO emission, which corresponds to about 50% of the local sound speed or 6% of the local Keplerian speed. Such an upward gas flow is difficult to reconcile with an embedded planet alone. Instead, we propose that magnetically driven winds via ambipolar diffusion are triggered by the low gas density within the planet-carved gap, dominating the kinematics of the gap region. We estimate the ambipolar Elsässer number, Am, using the HCO+column density as a proxy for ion density and find that Am is ∼0.1 at the radial location of the upward flow. This value is broadly consistent with the value at which numerical simulations find that ambipolar diffusion drives strong winds. We hypothesize that the activation of magnetically driven winds in a planet-carved gap can control the growth of the embedded planet. We provide a scaling relationship that describes the wind-regulated terminal mass: adopting parameters relevant to 100 au from a solar-mass star, we find that the wind-regulated terminal mass is about one Jupiter mass, which may help explain the dearth of directly imaged super-Jovian-mass planets.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. Abstract

    Deuterium fractionation provides a window into the thermal history of volatiles in the solar system and protoplanetary disks. While evidence of active molecular deuteration has been observed toward a handful of disks, it remains unclear whether this chemistry affects the composition of forming planetesimals due to limited observational constraints on the radial and vertical distribution of deuterated molecules. To shed light on this question, we introduce new Atacama Large Millimeter/submillimeter Array observations of DCO+and DCNJ= 2–1 at an angular resolution of 0.″5 (30 au) and combine them with archival data of higher energy transitions toward the protoplanetary disk around TW Hya. We carry out a radial excitation analysis assuming both LTE and non-LTE to localize the physical conditions traced by DCO+and DCN emission in the disk, thus assessing deuterium fractionation efficiencies and pathways at different disk locations. We find similar disk-averaged column densities of 1.9 × 1012and 9.8 × 1011cm−2for DCO+and DCN, with typical kinetic temperatures for both molecules of 20–30 K, indicating a common origin near the comet- and planet-forming midplane. The observed DCO+/DCN abundance ratio, combined with recent modeling results, provide tentative evidence of a gas-phase C/O enhancement within <40 au. Observations of DCO+and DCN in other disks, as well as HCN and HCO+, will be necessary to place the trends exhibited by TW Hya in context, and fully constrain the main deuteration mechanisms in disks.

     
    more » « less
  6. Abstract

    High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces.

     
    more » « less